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g-factor anisotropy of hole quantum wires induced by Rashba interaction
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We present calculations of the g factors for the lower conductance steps of three-dimensional hole quantum
wires. Our results prove that the anisotropy with magnetic field orientation, relative to the wire, originates
in the Rashba spin-orbit coupling. We also analyze the relevance of the deformation, as the wire evolves from
three-dimensional toward a flat two-dimensional geometry. For high enough wire deformations, the perpendicular
g factors are greatly quenched by the Rashba interaction. On the contrary, parallel g factors are rather insensitive
to the Rashba interaction, resulting in a high g-factor anisotropy. For low deformations, we find a more irregular
behavior, which hints at a sample-dependent scenario.
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I. INTRODUCTION

Spin-orbit interactions in semiconductor materials offer
interesting possibilities of spin control in nanostructures.1

Among them, the Rashba interaction that originates in ex-
ternally applied electric fields is most promising due to its
tunability. In this paper, we prove that the Rashba interaction is
an important source of spin anisotropy in hole quantum wires.
This anisotropy manifests in large differences between the
energy splittings for magnetic fields parallel and perpendicular
to the wire.2–6 Our calculations show that, in the presence of
Rashba interaction, the perpendicular field becomes much less
effective in generating spin splittings than the parallel one.
This effect is favored by the deformation of the quantum wire,
i.e., anisotropy increases when the wire evolves from three-
dimendsional (3D) toward a more flat quasi-two-dimensional
(2D) geometry.

In semiconductor hole systems such as p-type GaAs
nanostructures, transport is mediated by holes in the valence
bands. As compared to electrons, holes are characterized
by a spin 3/2, aside from a sign difference in charge. The
corresponding fourfold discrete space is a source of qualitative
differences with respect to the more usual twofold spin of
electrons. In 2D hole gases, different splittings for normal and
in-plane fields have been observed, as well as for different
in-plane orientations.7–10 As an alternative to the modulation
doping technique,11 these 2D hole gases can be fabricated
controlling the position of the Fermi energy with gate-induced
electric fields.12–14 By further confining the hole gas, it is
possible to generate nanostructures with the shape of quantum
wires.15–17 In this case, the splitting varies, in principle, with
both wire and magnetic field orientations.3–6

There are few theoretical analyses of the spin splittings in
hole quantum wires.18–24 Although the Rashba interaction was
usually not taken into account, this situation changed in some
recent works.17,25 Indeed, Quay et al.17 have observed the
formation of a spin-orbit gap induced by the combined action
of magnetic field and Rashba coupling in a hole quantum
wire, while Chesi et al.25 have studied, both experimentally
and theoretically, the spin-resolved transmission of a quantum
point contact fabricated in a 2D hole gas. In the latter, the
Rashba interaction is shown to favor a band crossing at
finite wave number that can be manipulated with an external

magnetic field. In agreement with our results, this crossing is
obtained in a multiband description of the hole states. It can
also be explained within a restricted single-band description
adding a cubic Rashba term.

In this paper, we have focused our attention on the
structure-inversion-asymmetry (Rashba) splitting since this is
known to be the dominant source of spin-orbit coupling in
GaAs. The bulk-inversion-asymmetry (Dresselhaus) is much
smaller and has a minimal effect on the energy bands.9,17

We will show that, in a hole quantum wire oriented along
x ′, the Rashba interaction due to asymmetry in the growth
direction (z′) causes a large difference between parallel (x ′) and
perpendicular (y ′) g factors of the wire, as deduced from the
B-induced splittings of the conductance steps. This anisotropy
is due to the quenching of the splitting when B is along y ′
and the wire flatness is large. For smaller deformations, the
situation is less clear due to a nonmonotonous evolution of the
splittings, which may result in a sample-dependent scenario.

II. MODEL

We describe the anisotropic kinetic energies H(kin) of the
holes in a four-band kp model. Introducing a spin discrete
index η = 3/2, . . . , −3/2 and following the notation of Ref. 1,
the diagonal terms read as

H(kin)
ηη = − h̄2

2m0

[
(γ1 + cηγ2)k2

‖ + (γ1 − 2cηγ2)k2
z

]
, (1)

where c±3/2 = 1 and c±1/2 = −1. In Eq. (1), γ1 and γ2 are the
kp parameters, �k is the 3D wave number, and we have also
defined k2

‖ = k2
x + k2

y . The nondiagonal kinetic terms are

H(kin)
+ 3

2 ,+ 1
2

= h̄2

m0

√
3 γ3 k−kz,

H(kin)
+ 3

2 ,− 1
2

= h̄2

2m0

√
3(γ2K̂ − 2iγ3kxky), (2)

H(kin)
+ 1

2 ,− 3
2

= H(kin)
+ 3

2 ,− 1
2
,

H(kin)
− 1

2 ,− 3
2

= −H(kin)
+ 3

2 ,+ 1
2
,

where k± = kx ± iky and K̂ = k2
x − k2

y . We only refer to

contributions in the upper triangle of matrix H(kin)
ηη′ since the

075343-11098-0121/2011/84(7)/075343(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.075343
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remaining ones can be inferred from the Hermitian character
of the matrix. In all calculations discussed below, we have used
numerical values for the kp parameters γ ’s corresponding to
GaAs.1

The wire confinement is represented by a deformed 2D
harmonic oscillator. Assuming the wire is oriented along x ′
while transverse and growth directions are given by y ′ and z′,
respectively, it is

H(conf) = − 1
2m0ω

2
0(y ′2 + az′2) . (3)

The adimensional parameter a of Eq. (3), corresponding to
the ratio of confinement strengths in z′ and y ′, controls the
flatness or 2D character of the wire. The direct coupling with
the magnetic field �B is given by the Zeeman term

H(Z) = −2κμB
�B · �J , (4)

where κ is a kp parameter, μB represents the Bohr magneton,
and �J is the angular momentum operator for a spin 3/2. Finally,
the Rashba interaction is described by

H(R) = (�k × �R) · �J , (5)

where we defined a vector constant �R ≡ α �E , related to the
effective electric field �E and kp parameter α.1 We shall treat �R
as a two-parameter vector with dominant component along the
growth direction, i.e., �R = Rz′ ûz′ + Ry ′ ûy ′ with Rz′ > Ry ′ .

In the presence of a magnetic field, the orbital effects of
the field are taken into account by means of the substitution
�k → −i∇ − e

h̄c
�A with the vector potential �A = (−yBz +

zBy, − Bxz/2,Bxy/2). In this process, Hermiticity is enforced
in the cross terms by using the symmetrized forms such as
kxky → (kxky + kykx)/2. Summarizing all contributions the
total Hamiltonian reads as

H ≡ H(kin) + H(conf) + H(Z) + H(R) . (6)

The wire Hamiltonian eigenvalues can be labeled with q, a
real number representing the longitudinal momentum and an

index I = 1,2, . . . as

H(q)|Iq〉 = εI (q)|Iq〉 , (7)

where εI (q) are the discrete energy bands of the nanostructure.
The eigenvalues are ordered as ε1(q) � ε2(q) � . . . since the
spectrum is not bounded from below due to the negative kinetic
terms.

We have obtained the solutions of the eigenvalue problem
given by Eq. (7) by discretizing in harmonic-oscillator states
for the two transverse oscillators along y ′ and z′:

|Iq〉 =
∑
nmη

C(Iq)
nmη |nmη〉 , (8)

where n,m = 0,1, . . . represent the number of quanta in
each oscillator, respectively. The resulting matrix eigenvalue
problem reads as∑

nmη

〈n′m′η′|H(q)|nmη〉C(Iq)
nmη = εI (q) C

(Iq)
n′m′η′ . (9)

In practice, the number of oscillator states in expansion
Eq. (8) can be truncated once convergence of the results is
ensured. The results shown below are well converged and they
have been obtained including the lower 20 oscillator states in
each direction. In Appendix B, a precise discussion on the
relevance of the basis truncation is given.

III. RESULTS AND DISCUSSION

As illustrative examples, Fig. 1 displays the energy bands
of selected cases. As is well known, the Rashba interaction
causes a characteristic band structure easily recognizable by
the pairs of subbands crossing at q = 0 and with maxima at
opposite q values (left panel). These maxima correspond to
band energy minima for the case of electrons. In the presence
of a magnetic field, when this points along the wire (x ′,
central panel), an anticrossing of the bands appears at q = 0.
This anticrossing may lead to anomalous conductance steps,
similar to those recently measured in Ref. 17. In Fig. 1, this
behavior can be seen for (E,q) ≈ (−11h̄ω0,0). For B in the
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FIG. 1. Energy bands for a = 64,Rz′ = 2.6h̄ω0�0, andRy′ = 0. Left panel is for B = 0, while center and right panels are for μBB = 0.1h̄ω0

in the parallel and transverse directions, respectively. The wire is oriented along (−2,3,3) and the growth direction is (3,1,1).
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FIG. 2. (Color online) Conductance traces for the band structure
in parallel and perpendicular magnetic fields of Fig. 1. For compari-
son, the B = 0 conductance is displayed as a thin line.

transverse direction (y ′, right panel), the band crossings persist,
but the two central maxima for each pair of bands are shifted
differently in energy, the band structure becoming asymmetric
with respect to q inversion.

The B-induced modifications of the band structure, as seen
in Fig. 1, cause a change in the conductance of the wire. This
modification of the conductance, in the limit of weak magnetic
field, is conveniently summarized by a number called the g

factor of each conductance split level. At B = 0, time-reversal
invariance of the system causes the conductance G to increase
in steps of 2G0 as the Fermi energy of the leads is reduced,
where G0 = e2/h is the conductance quantum. The evolution
of the wire conductance with energy can be understood if we
imagine a horizontal line, indicating the position of the Fermi
energy, in the left panel of Fig. 1; as this line is moved to
lower energies, it sweeps the band maxima always in pairs,
with each maxima corresponding to an increase of G0 in

the conductance for hole transport. The result is the typical
staircase conductance with step heights of 2G0. A similar
procedure for the central and right panels of Fig. 1 convinces
us that intermediate half steps in conductance are caused by
the magnetic field. They are smaller than the full steps and
proportional to the intensity of the magnetic field.

The scenario that we have just sketched is explicitly shown
in Fig. 2, highlighting the conductance half steps at odd
multiples of G0. Notice that the energy span varies for each
specific conductance half step. In the limit of weak magnetic
fields, we can conveniently summarize the B-induced N th
half step in the conductance, appearing between steps at
2(N − 1)G0 and 2NG0, in terms of a single number called
the g factor. As this number depends on the conductance step
and the magnetic field orientation, we use the notation g

(N)
‖ and

g
(N)
⊥ to indicate the g factor of the N th step, for B along x ′ and

y ′, respectively. Of course, other orientations are, in principle,
possible, but we will restrict first to these two as they are the
relevant ones in the measurements of spin hole anisotropy.
In Appendix A, we will briefly mention the behavior for the
z′-oriented field.

Our precise definition of the parallel-field g factor is

g
(N)
‖ = 	

(N)
‖

3μBB
, (10)

where 	
(N)
‖ is the energy range for the N th half step in a

magnetic field B. In Eq. (10), the factor 3 in the denominator
is introduced by convention.26 The definition of g

(N)
⊥ , for

magnetic field along y ′, is obtained simply by replacing 	
(N)
‖

by 	
(N)
⊥ in Eq. (10).

Figure 3 displays the perpendicular (lower row) and parallel
(upper row) g factors for the lower conductance steps, as a
function of the wire deformation a and for different values
of the Rashba coupling Rz′ . These are the main results of

wire deformation a

N = 2 N = 3 N = 4 N = 5

B || y'

⊥
 

B || x'

FIG. 3. (Color online) Parallel and perpendicular g factors as a function of wire deformation for different values of the Rashba strength:
Rz′ = 0 (circles), 1.5h̄ω0�0 (triangles), and 2.6h̄ω0�0 (squares). Upper and lower rows are for parallel and perpendicular fields, while columns
from left to right correspond to increasing conductance half step N (see text). The results for N = 1 are not shown due to their similarity with
the displayed N = 2 case. The orientation of the wire is the same as Fig. 1.
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FIG. 4. (Color online) Parallel (left) and perpendicular (right)
g factors as a function of Rashba coupling intensity for different
values of the deformation a. The results correspond to the N = 5
conductance half step.

our work. They were obtained for a specific wire orientation
and direction of crystallographic growth (z′) taken from
the experimental works of Danneau et al.3 and Koduvayur
et al.4 We have checked, however, that a qualitatively similar
influence of the Rashba intensity and confinement deformation
is obtained assuming other arbitrary orientations. The g factors
show a general tendency to decrease as a increases, except for
smaller deformations (a < 100) for which g may increase or
even show irregular behavior in some cases. Focusing first on
g‖, we notice that this component does not change significantly
when the Rashba intensity increases, especially at large a’s, for
which the results are almost overlapping in the upper panels
of Fig. 3. Very remarkably, however, for magnetic field in the
perpendicular direction, small variations in Rz′ are enough to
strongly modify the values of g⊥. This is more clearly seen in
Fig. 4, which displays the dependence with Rashba coupling
intensity of the g factors.

There is a general Rashba-induced quenching of g
(N)
⊥ in

Figs. 3 and 4, quite conspicuous for N = 4 and 5. This
effect is so strong that it can reverse the relative importance
of g‖ and g⊥; from g⊥ > g‖ when Rz′ = 0 to g⊥  g‖ for
increasing Rz′ (>2.5h̄ω0�0, Fig. 4). With the chosen values
of Rz′ we even find a range of a’s for which g

(5)
⊥ essentially

vanishes. It is interesting to point out that a similar quenching
of conductance plateaus in transverse field was discussed in
Ref.27 for parabolic wires with electron conduction, as opposed
to the present hole conduction. In both cases, the Rashba
spin-orbit coupling is the underlying mechanism.

Turning to the comparison with experiments, this is some-
what complicated due to the sample dependence. In general,
however, a large g-factor anisotropy between parallel and
perpendicular orientations has indeed been observed in Refs.
3–6. This was generally attributed to a preferential orientation
of the spins along the wire for strong confinements. Our results
prove with detailed calculations that the Rashba interaction for
holes is the specific mechanism allowing the appearance of this
anisotropy. As this interaction is sample dependent and may
vary with external field, our results also predict that the hole
g factors may be tunable to a certain degree, which may be
relevant for spintronic applications. The experimental values of

wire deformation a are somewhat uncertain in general, which
is an additional source of difficulty for comparison. In general,
however, experimental wire deformations are a < 100, which
in our calculations correspond to a regime with rather large
fluctuations (Fig. 3). Only for larger a’s is the value of g

(N)
⊥

consistently below g
(N)
‖ at high enough Rz′ . We believe that

detailed comparison in this regime is quite involved due to
the fluctuations. On the other hand, these sharp variations of
g‖ in the small-a regime and of g⊥ at all a’s can be seen
as a manifestation of magnetoconductance tunability via the
Rashba coupling.

IV. A TWO-BAND MODEL

A more transparent physical interpretation, complementing
the above numerical results, can be obtained in a simplified
model based on only two bands. Focusing on the I th
intermediate half step having conductance IG0, with I =
1,3, . . ., we select the two states I and I + 1 at a given q,
{|Iq〉0,|(I + 1)q〉0}, where the zero subscript is indicating
absence of a magnetic field. These two states are the basis in
which the effect of the magnetic field in different orientations
will be described.

Let us assume that the B-field Hamiltonian may be split as

H(q) = H0(q) + H(Z) , (11)

where H(Z) is the Zeeman energy defined above in Eq. (4)
and H0 is the zero-field Hamiltonian in Eq. (6). Notice that
Eq. (11) neglects orbital field effects, a simplifying assumption
motivated by the qualitative nature of the present two-band
model.

The zero-field energy bands, given by

H0(q)|Iq〉0 = εI0(q)|Iq〉0 , (12)

FIG. 5. (Color online) Wave-number dependence of the matrix
elements entering Eqs. (15) and (16) for I = 7. Circles, triangles,
and squares are for increasing values of the Rashba intensity Rz′ =
0.1h̄ω0�0, 1.5h̄ω0�0, and 2.6h̄ω0�0, respectively. (Other parameters:
a = 150, B = 0.)
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are assumed known, such as those displayed in the left panel
of Fig. 1 for a specific confinement and Rashba intensity. In
the presence of a magnetic field, the modified energy bands
are the eigenvalues of the matrix(

εI0(q) + γI δ

δ∗ ε(I+1)0(q) + γI+1

)
, (13)

where

γI = 0〈Iq|H(Z)|Iq〉0,
(14)

δ = 0〈Iq|H(Z)|(I + 1)q〉0.

A. Parallel field

In a parallel field, H(Z) ∝ Jx ′ and, for this case, we
have found that the γ ′

I s vanish. This is reminiscent of the
behavior of conduction electron wires, where the spin textures
also show a vanishing integrated spin along the wire.27 In
parallel orientation, the band extrema are at q = 0 (see
Fig. 1, middle panel) for which εI0(0) = ε(I+1)0(0) due to
Kramers degeneracy. Under these conditions, we find from
the two eigenvalues of the matrix in Eq. (13) that

g
(I )
‖ = 4

3κ | 0〈I0|Jx ′ |(I + 1)0〉0| . (15)

That is, the parallel g factor is determined by the transition
matrix elements of the parallel spin component between the

Kramers degenerate states at q = 0. The upper panel of
Fig. 5 shows this transition matrix element for I = 7. Notice
that, for q ≈ 0, the transition matrix element is not depending
on the Rashba intensity, thus explaining why the parallel g

factor is not strongly affected by the spin-orbit coupling.

B. Perpendicular field

For H(Z) ∝ Jy ′ , the band maxima are shifted in opposite
directions for positive and negative q’s (Fig. 1, right panel).
This implies that the energy difference determining the g

factor corresponds now to states with opposite wave numbers,
say, qm and −qm. For nonzero qm, the two states εI0(qm)
and ε(I+1)0(qm) are nondegenerate and, for a sufficiently
small field, we should have δ  εI (qm),γI in Eq. (13). As
a matter of fact, we find that δ actually vanishes for the
perpendicular field. This is the regime of nondegenerate first-
order perturbation theory with modified energies εI0(qm) + γI

and ε(I+1)0(qm) + γI+1. With the explicit definition of the γ ’s
and noting that εI0(qm) = εI0(−qm) and γI (q) = −γI (−q) for
any q (Fig. 5), the perpendicular g factor reads as

g
(I )
⊥ = 4

3κ
∣∣

0〈Iqm|Jy ′ |Iqm〉0

∣∣ . (16)

It seems natural that, in the y ′ orientation, the g fac-
tor is simply proportional to the expectation value of Jy ′ .
Figure 5 shows the variation of this expectation value with the

FIG. 6. Evolution of the energy bands for
selected numbers (Ny′ ,Nz′ ) of oscillator states in
the matrix discretization (columns) and aspect
ratios a (rows). The gray color results are
qualitative, indicating that the corresponding
energy regions are full of bands. The insets
in the rightmost columns show the details of
those dense band distributions. Parameters: B =
0, Rz′ = 2.6h̄ω0�0, Ry′ = 0, growth direction
(001), and wire orientation (110).
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wave number and the Rashba intensity. Notice that, typically,
−0.5 < qm < 0.5, i.e., the maxima are located in the central
part of Fig. 5, lower panel. The conspicuous discontinuity at
q = 0 of 0〈7q|Jy ′ |7q〉0 is simply reflecting the band crossing
that occurs for this q (Fig. 1, left panel) causing spin exchange
between the seventh and eighth states. When the Rashba
intensity Rz′ increases, there is a severe reduction of 〈Jy ′ 〉0

in absolute value for the central region of q’s. This is the
mechanism by which the Rashba interaction quenches the
transverse g factor, namely, by means of a strong reduction
of the transverse y ′ spin component.

For strong spin-orbit coupling, the expectation values of all
three components of the spin vector at zero magnetic field 〈 �J 〉0

vanish, which is a manifestation of the spin randomization
induced by the Rashba field �R. In the y ′ orientation, this
induces a quenching of the g factor through Eq. (16) but,
quite remarkably, Kramers degeneracy at zero wave number
keeps the parallel g factor almost unaffected by virtue of the
transition matrix elements in Eq. (15).

The g factors obtained from Eqs. (15) and (16) nicely agree
with the results from the full diagonalization when orbital
effects of the magnetic field are also neglected in the latter. The
comparison with the complete model (results of Fig. 3) is less
good; the trends are qualitatively reproduced, but differences
may be as large as a factor of 2. Orbital effects of the field are
thus quite important for a precise analysis.

V. CONCLUSION

We have attributed the anisotropy of magnetotransport g

factors in hole quantum wires to the Rashba interaction. When
the wire deformation and Rashba interaction are both large
enough (a > 100, Rz′ > 2.5h̄ω0�0), g

(N)
⊥ is greatly quenched

by the Rashba interaction and g
(N)
‖ is almost unaffected. For

lower wire deformations (a < 100), we find a fluctuating,
sample-dependent behavior of the g factors.
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APPENDIX A: FIELD ALONG z′

Experimental g factors are usually obtained for magnetic
fields in the x ′y ′ plane, either in parallel (x ′) or perpendicular
(y ′) direction with respect to the wire. For completeness, in
this appendix, we discuss in a qualitative way the effects of
the magnetic field when this points along the growth direction
z′. The energy bands are similar to those of the x ′ orientation
(middle panel of Fig. 1): they are symmetric respect to q

inversion, with anticrossing points at q = 0, although the B-
induced splitting is much stronger. This enhancement agrees
with experiments2 and is surely due to the important orbital

motions induced by the field in this geometry. We thus obtain
gz′ > g‖, where gz′ and g‖ denote the g factors for the z′ and
x ′ fields, respectively.

Looking at the Rashba field dependence, gz′ behaves
similarly to g⊥ (along y ′): it decreases with increasing Rz′ ,
but does not vanish for the maximum value we have taken
(2.6h̄ω0�0). For strong wire deformation, the saturation value
corresponds to gz′ ≈ 5, while for in-plane magnetic field, it
corresponds to g‖,⊥ ≈ 1.5 (see Fig. 3). For small values of a,
the behavior of gz′ is less regular, as for the other orientations,
but it tends to increase with a. Within the two-band model of
Sec. IV, we expect

g
(I )
z′ = 4

3κ| 0〈I0|Jz′ |(I + 1)0〉0|, (A1)

which is equivalent to Eq. (15), replacing Jx ′ → Jz′ , and is
now depending on the value of the Rashba intensity.

APPENDIX B: BASIS TRUNCATION

This appendix discusses the relevance of the truncation of
the number of oscillator states for the y ′ and z′ oscillators. It
is usually assumed that the confinement allows the truncation
to the lowest, or few lowest, states. Here, we explicitly check
this quantitatively for selected values of a, the ratio of the
two confinement strengths. We restrict, for simplicity, to
the B = 0 case with strong Rashba coupling in the growth
direction.

Figure 6 displays the evolution of the band structure when
(i) increasing Ny ′ and Nz′ sequentially from left to right
panels, and (ii) increasing the deformation degree a from top
to bottom panels. The right column shows results that are
very close to physical convergence. Looking at the successive
band crossings at q = 0, we notice that the truncation to
(Ny ′ ,Nz′ ) = (1,1) grossly overestimates the energy separation
between pairs of bands in all cases. It is remarkable that, for
increasing flatness degree, the (1,1) truncation deviates more
and more from the right column. This is a consequence of
the intersubband couplings induced by the kp and Rashba
Hamiltonians: at least a few bands in the shallow oscillator
(y ′) are essential even for large a’s.

More reasonable results are found for (Ny ′ ,Nz′ ) = (10,1),
although the differences with the (10,10) basis are still large
quantitatively. In this case, however, increasing a improves
the quality of the description since intersubband coupling is
allowed at least in the y ′ direction. Finally, the (10,2) results
are close to the converged ones and only the insets reveal
that sizable differences are present at intermediate or low
values of a. These differences are small in the behavior of
the upper bands and become more and more important as
the energy is reduced. From this analysis, we conclude that,
for our present purpose, namely, the description of magneto g

factors of several successive conductance steps, it is essential to
include enough oscillator bands in both the y ′ and z′ oscillators.
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