, M.C. Conejo ², L. Mart'nez-Mart'nez ², V.J. Bened'

Contact: VJ Bened

A. DomŽnech-S‡nchez ¹ , S. Hern‡ndez-AllŽs

çrea de Microbiolog'a, Universitat de les Illes Balears and IMEDEA (CSIC-UIB), Palma de Mallorca

Introduction

Poster board #109

Paper #0808

We have previously described porins OmpK36 and OmpK37 of K. pneumoniae (1. 4).Escherichia coli . both by They are the homologues of porins OmpC and OmpN of sequence similarity comparisons and by their functional characteristics. Both OmpK36 and OmpC porins are preferentially expressed in media of high osmolarity and they are under the control of a micF gene upstream of their porin-coding regions. Also, both OmpK37 and OmpN porins are expressed at very low levels under the usual laboratory conditions, so they cannot be detected in Coomassie Blue-stained polyacrylamide gels. K. pneumoniae clinical isolates express two or one porin: either porin OmpK36 alone or both OmpK36 and a second porin that is not OmpK37 (7). We have designated this sec ond porin as OmpK35. Most K. pneumoniae clinical isolates expressing extended-Ð clinical spectrum §-lactamases (ESBL) express only porin OmpK36, while most ESBL isolates express both OmpK36 and OmpK35 porins (7). To characterize in more detail the OmpK35 porin and evaluate its role in antimicrobial resistance, we have cloned and sequenced the ompK35 gene. Expression of the cloned porin genes of K. pneumoniae in a porin-deficient isolate restored bacterial permeability to cephalosporins, carbapenems, and quinolones. Penetration of antimicrobials, except carbapenems, was much lower through the OmpK37 porin than through the other two porins. Among the three porins, OmpK35 allows more efficiently the penetration of anti microbials than porins OmpK36 and OmpK37. Sequence comparison and functional properties demonstrated that OmpK35 is the K. pneumoniae equivalent to E. coli OmpF

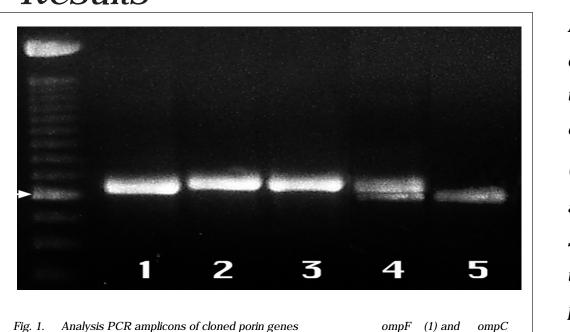
Materials and Methods

Bacterial strains, plasmids, and culture media.

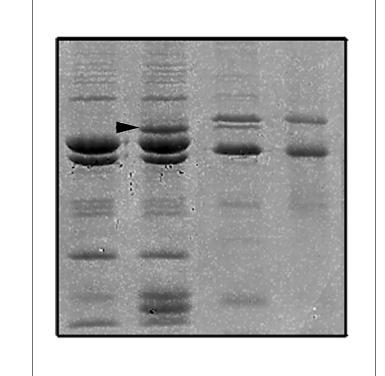
K. pneumoniae strains KT755 and C3 express both OmpK36 and OmpK35 porins, strain KT5002 derived from C3 expresses only OmpK35 due to Tn 5 inactivation of ompK36 (1). CSUB10S and CSUB10R are porin-sufficient and -deficient clinical isolates of K.pneumoniae and express ESBL; they were isolated from a single patient during anti microbial therapy (2). E. coli DH5 α was used as host for cloning experiments. Plasmids pWSK29 and pWSK30 were used as low-copy vector for cloning; plasmids pCSI2 and pSHA1 (10) were used as source of kanamycin and tellurite resistance cassettes, respectively; plasmids pLF4 (8) and pMY11 (11), and pSUV7 (1), were used as sources E. coli) , and OmpK36 (from of cloned porins OmpF and OmpC (from K. pneumoniae respectively. Luria Bertani and Nutrient Broth were used as media of high and low osmolarity: 447 and 104 mOsm/Kg, respectively. Genetic methods. A gene bank of strain KT755 was obtained by chromosomal digestion with Sau 3A and

Bgl II-digested cosmid pLA2917. Clones were ligation of aprox. 20 kb fragments with packed using the Gigapack III gold kit (Stratagene) and were maintained in strain DH5 Clones were screened by PCR using primers directed against sequences conserved in porin genes (see Results). Southern blot analysis was performed by standard methods using the ECL kit (Amersham) for probe labeling. DNA sequencing was performed using an Applied Biosystem automatic sequencer. Liposome assays.

Liposome swelling assays were performed following (9) as described (4)


Antimicrobial tests: MICs and §-lactamases. MIC values were determined by microdilution following the NCCLS guidelines and by Etest (AB Biodisk). ESBL production was evaluated with amoxi/clavulanic, cefotaxime, and ceftazidime disks. §-lactamase production was measured spectrophotometrically

Outer membrane proteins (OMPs) and porins.


after sonication.

OMPs were isolated as sodium-lauryl sarcosinate insoluble material (6) and porins were isolated by differential solubilization and trypsin treatment (1). OMPs and porins were analysed by SDS-PAGE as described (1).

Results

Attempts to screen the gene bank with antibodies raised against porin OmpK35 isolated from strain KT5002 (OmpK36+), OmpK36+) were unsuccessful due to the strong cross-reactivity of the antiserum with the porins of the E. coli host strain. We then decided to use a PCR approach. As shown in Fig. 1, ompC -type, the latter showing a slightly higher molecular mass: the PCR products from cloned ompF -type genes are clearly distinct from those of the ompC amplicons (lanes 2 and 3). These differences were also observed when starting from chromosomal DNAs amplicons (lane 1) with b) produced one single (lanes 4 and 5): strain C3 (OmpK36 ⁺, OmpK35 ⁺) produced two amplicons, whereas strain KT5002 (OmpK35 amplicon with a molecular mass compatible with that of the ompF -type amplicons. gene produced by PCR an amplicon clearly distinguishable from those of other porin genes, we used this approach to screen K. pneumoniae KT755. Eleven groups of 90 clones each were separately analysed as follows: the 90 clones of each group were the gene bank from pooled, and plasmids were isolated by a miniprep method, and amplified by PCR with the selected primers. One group produced an amplicon with the desired size, and successive analyses within this group of 10-clones groups, and the individual clones of the positive group, resulted in the identification of a single clone carrying a plasmid designated pSHA15 which gave the desired PCR amplicon

(2) from E. coli, and o mpK36 (3) from K. pneumoniae

strains (5). Arrowhead indicates the 600 bp marker.

DNAs of OmpK36 + OmpK35 + (4) and OmpK36 DOMpK35 + K. pneumoniae

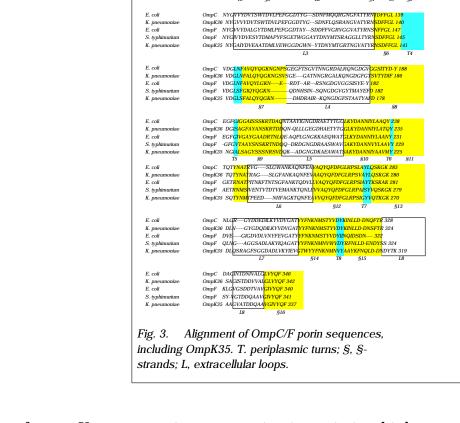

Fig. 2. Analysis of the expression of the cloned ompK35 porin gene. OMPs from the host strain E. coli DH5 α (1) and with cloned ompK35 (2). Arrow indicates the expression of the cloned OmpK35 porin. Lanes 3 and 4 show the osmo regulation of OmpK35 in strain KT755 grown in low (3) and high (4) osmolarity medium.

Fig. 4. Porin expression of K. pneumoniae clinical isolates CSUB10R (1),

CSUB10S (2), and CSUB 10R with cloned porin OmpK35 (3) and OmpK36 (4). White and black arrowheads indicate the LamB and OmpA homologues

As shown on Fig. 2, analysis of the OMPs of the pSHA15containing clone showed that this plasmid coded for an OMP with a molecular mass compatible with that of the OmpK35 porin. The OmpK35 porin of strain KT755, was identified on the gel because its expression is downregulated on high osmolarity culture medium.

, and from chromosomal

To study the role of K. pneumoniae porins in antimicrobial resistance, we separately expressed the three cloned porins in the porin-deficient clinical isolate CSUB10R. For selection purposes, plasmids containing the cloned genes were doted with a telluriteresistance cassette. As shown in Fig. 4, CUSB10R does not express porins (lane 1) by comparison with its parent strain CSUB10S (lane 2). Lanes 3 and 4 show the expression of the cloned porins OmpK36 and OmpK35, respectively. A high-molecular mass proteins which migrates just above the cloned porins in all strains and constructs was indeed isolated from CSUB10S as a porin, and its N-terminal sequence demonstrated that it is the LamB porin. Expression of porin OmpK37 was achieved also by cloning but its demonstration required Western blot experiments that are not shown here.

Further evidence that pSHA15 carried the OmpF-type porin of K. pneumoniae , or *OmpK35*, came from sequencing of the corresponding gene and comparison of its deduced amino acid sequence with those of other related porins. Since the crystal structures of porins OmpK36 and OmpF are known (3, 5), the secondary structures of OmpK35 and other porins could be easily predicted. As shown in Fig. 3, for OmpK35 a typical 16 §-strand structure, with 8 short periplas mic turns and 8 extracellular loops of variable length was predicted. Alignment with other porin sequences was straightforward due to the conservation of the §-strands and of some key resi dues that are well conserved in enterobacterial and non-enterobacterial porins: Lys16, Arg38, Glu58, Arg75, Asp106, E110, and Arg126. In the know porins structures (including that of), these residues are distributed across the pore, with basic Rhodopseudomonas capsulatus residues (Lys and Arg) on one side, and Asp, Glu, and main carbonyl residues of L3 on the other side. OmpK35 and other OmpF-type porins show a shorter extracellular loop L4 than the OmpC-type porins.

and Department of Microbiology, University of Seville

Table 1. MIC values against antimicrobials of K. pneumoniae clinical isolates and constructs expressing different porins. None 128 32 >2048 512 4 4 <0.06 512 512 1 4 2 0.12 1 8 16 2 64 4 1 0.06 512 16 0.06 1 <0.06 2 4 0.12 0.06 0.25 0.06 1 4 16 2 64 0.5 2048 256 8 >256 8 128 256 1 4 2 0.12 2 8 8 2 64 4 OmpK37 ² 64 4 2048 128 2 4 0.06 128 125 1 1 2 0.12 1 8 32 2 32 4 32 1 1024 64 0.06 0.5 <0.06 32 32 0.06 0.06 1 0.12 0.5 2 16 0.5 16 4 OmpK35 1 0.03 2 1 <0.01 <0.06 <0.06 0.125 0.25 0.25 0.03 0.12 0.01 1 4 16 0.75 1 1 ¹ FOX. cefoxitin: CTT, cefotetan: CAZ, ceftazidime: CTX, cefotaxime: CLV, clavulanic acid: FEP, cefepime: PIR, cefpirome: IP. imipenem: MP, meropenem: CIP, ciprofloxacin: CLI, clinafloxacin: AK, amikacin: G,gentamicin: TET, tetracycline: CHL, chloramphenicol; SXF, sulfonamide, trimethoprim. ²Expression not detected by Coomassie Blue staining but detected by Western blotting with anti OmpK3: ³Expression detected by

Discussion

We have described the existence of three porins in K. pneumoniae : porins OmpK37, OmpK36, and OmpK35. Most clinical isolates of this species express porins OmpK36 and OmpK35, but when isolates produce ESBL, most of them does not express or express very reduced levels of porin OmpK35. Here we have demonstrated by cloning and sequencing that E. coli OmpF porin. Both OmpF and OmpK35 porins are porin OmpK35 is the homologue of preferentially expressed in media with low osmolarity, and both porins are preferentially lost, over OmpK36 and OmpC, in response to antibiotic pressure. This is due to the fact that OmpK35 and OmpF porins allow more efficiently the penetration of antimicrobials than the OmpK36/OmpC porins. The following porin, in terms of efficiency of antibiotic diffusion, is E. coli). Thus, a K. pneumoniae ESBL + isolate, which does not express or express low levels of porin OmpK35, could increase its MIC values by loosing expression of the remaining OmpK36 porin. This type of porin-deficient isolate would be θ OmpK35 θ . Most of these visualized in Coomassie-stained polyacrylamide gels as OmpK36 isolates would still be sensitive to carbapenems due to the existence of a third porin OmpK37. which is essentially not permeable to §-lactams but does allow passage of imipenem and meropenem.

Conclusions

We have characterized porin OmpK35, the homologue of E. coli porin OmpF. K. pneumoniae Among the three porins described in , OmpK35 allows more efficiently than K. pneumoniae porins OmpK36 and OmpK37 the penetration of antimicrobials

References

1. Albert', S., F. Rodr'guez-Qui-ones, T. Schirmer, G. Rummel, J. M. Tom‡s, J. P. Rosenbusch, and V. J. Bened'.					1995. A porin	
Klebsiella pneumoniae : Sequence homology, three-dimensional structure, and complement binding. Infect. Immun.					63: 903-910.	
2. Ardanuy, C., J. Li–ares, M. A. Dom'nguez, S. Hern‡ndez-AllŽs, V. J. Bened', and L. Mart'nez-Mart'nez.					1998. Outer membrane pro	
files of clonally related Kle	lebsiella pneumoniae	isolated from clinical san	ples and activity of cephalo	sporins and carbapenen	ns. Antimicrob.	
Agents Chemother. 42: 16	636-1640.					
3. Cowan, S. W., T. Schirmer, G.	. Rummel, M. Steiert, R. Gh	osh, R. A. Pauptit, J. N. Ja	nnsonius, and J. P. Rosenbu	ısch.		1992. C
structures explain functional prop	perties of two	E. coli porins. Nature.	358: 727-733.			
4. DomŽnech-S‡nchez, A., S. Hern‡ndez-AllŽs, L. Mart'nez-Mart'nez, V. J. Bened', and S. Albert'.					1999. Identification and characteriza	
tion of a new porin gene of	Klebsiella pneumoni	iae : its role in §-lactan	antibiotics resistance. J. B.	acteriol.	181: 2726-2732.	
5. Dutzler, R., G. Rummel, S. Alb	bert', S. Hern‡ndez-AllŽs, P	P. S. Phale, J. P. Rosenbus	ch, V. J. Bened', and T. Sc.	hirmer.		1999.
structure and functional characte	erization of OmpK36, the os	moporin from	Klebsiella pneu	moniae . Structure	e. 7: 425-434.	
6. Filip, C., G. Fletcher, J. L. Wuli	lf, and C. F. Earhart.	1973. Solubi	lization of the cytoplasmic n	nembrane of	Escherichia coli	by the ic
detergent sodium-lauryl sarcosina	nate. J. Bacteriol.	115 (3) : 717-722.				
7. Hern‡ndez-AllŽs, S., S. Albert	ť, D. çlvarez, A. DomŽnech	-S‡nchez, L. Mart'nez-Ma	rt'nez, J. Gil, J. M. Tom‡s, a	and V. J. Bened'.		
1999. Porin expression in clinical	l isolates of	Klebsiella pneumoniae	. Microbiol. 145: 67	3-679.		
8. Inokuchi, K., Mutoh, N., S. Matsuyama, and S. Mizushima.			982. Primary structure of th	e ompF gen	e that codes for a major	outer
membrane protein of Escl	cherichia coli K-12. Nuc	cl. Ac. Res. 21: 695	57-6968.			
9. Lee, E. H., E. Collatz, J. Tr'as,	, and L. Gutmann.	1992. Diffusion o	of §-lactam antibiotics into p	roteoliposomes reconstit	uted with outer	
membranes of isogenic imipenen	m-susceptible and -resistan	t strains of	Enterobacter cloace	ae . J. Gen. Microb	oiol. 138: 2347-23	351.
10. Mart'nez-Mart'nez, L., S. Hern‡ndez-AllŽs, S. Albert', J. M. Tom‡s, V. J. Bened', a			and G. A. Jacoby.		1996. In vivo selec	tion of porin
deficient mutants of Klebsi	siella pneumoniae wi	ith increased resistance to	cefoxitin and third generation	on cephalosporins. Antim	icrob. Agents	
Chemother. 40: 342-348.						
11. Mizuno, T., M. Y. Chou, and	M. Inouye.	1983. A comparative study	on the genes for three pori	ns of the	Escherichia coli	outer
membrane. J. Biol. Chem.	258: 6932-6940.					