## **Optimal Direct (non linear) Taxation**

## A model written by James Mirrlees Review of Economic Studies, 1971

A story told by Amedeo Spadaro Ensae 2009 Basic question:

- it is possible to solve optimally the equity efficiency trade off?
- •There is an explanation/justification of observed non linear tax schedules

Outline of the talk:

-Introduction: Franco-Anglo contributions....

-The Mirrlees model:

- •Structure
- •Components
- •Novelty
- •Importance
- •Resolution techniques
- •Economic interpretation of the results

## Introduction

#### Art 13 of Déclaration des Droits de l'homme et du citoyen du 26 août 1789

Pour l'entretien de la force publique, et pour les dépenses d'administration, une contribution commune est indispensable: elle doit être également répartie entre tous les citoyens, en raison de leurs facultés.

### Edgeworth (1897)

Equal Absolute Sacrifice Equal Proportional Sacrifice Equal Marginal Sacrifice

dUo=dU1dUo/Uo=dU1/U1 $G'(U)U'()=\lambda$ 

## Sidgwick (1883)

Problem of (dis)incentives:

- 1. The size of the cake
- 2. Population increases (maltusian arguments)
- 3. If fully equality is imposed then diversity, progress and liberty are eliminated

# First attempts: linear taxation as a replication of Ramsey indirect taxation model. But in reality.....



-0.05

Δ

1

2 Salaire annue4brut enproportion du SMIC (16284,84 epros) 10

The structure of the Mirrlees model:

- •A Social Welfare Function
- •A distribution of the productivities
- •The Agent behavior (single crossing hp, elasticities)
- •The production set (perfect competition and constant returns to scale)
- •The informational frictions (an incentive compatibility story...)

## The theory

 $V[w,T()] = U(c^*, L^*); \quad (c^*, L^*) = \arg \max[U(c, L); c = wL - T()]$ V[w,w] = U(c(w), Y(w) / w)V[w,w'] = U(c(w'), Y(w') / w)

$$\begin{aligned} \max_{T(0)} \int_{w_0}^{Z} G\{V[w, T()]\}f(w)dw \\ \int_{w_0}^{Z} T(wL^*)f(w)dw \ge Q \\ V[w, w] \ge V[w, w'] \end{aligned}$$

 $U(c,L) = c - B(L) \qquad B(L) = (1 + \frac{1}{\varepsilon})^{-1} L^{1 + \frac{1}{\varepsilon}} \quad L^* = w^{\varepsilon} \left[ 1 - T'(wL^*) \right]^{\varepsilon}$ 

$$H[L(w), V(w), \mu(w), \lambda] = [G(V) + \lambda (wL - c - Q)]f(w) + \mu(w) \frac{L}{w} B_L(L)$$

$$H[L(w), V(w), \mu(w), \lambda] = [G(V) + \lambda (wL - V(w) - B(L) - \overline{Q})]f(w) + \mu(w) \frac{L}{w} B_L(L)$$
(p. foc 1)  $\frac{\partial H()}{\partial L} = \lambda (w - B_L)f(w) + \mu(w) \frac{(LB_L)_L}{w} = 0$ 
(p. foc 2)  $\frac{\partial H()}{\partial V} = -\frac{\partial \mu(w)}{\partial w} \Rightarrow [G'(.) - \lambda]f(x) = -\frac{\partial \mu(w)}{\partial w}$ 
that, after integration and making use of the transversality condition  $\mu(Z) = 0$ 
implies that  $\int_{w}^{z} \left(1 - \frac{G'(.)}{\lambda}\right) f(x) dx = -\frac{\mu(w)}{\lambda}$ 

Consolidating the two and making use of the f.o.c of problem (1.2) we obtain the condition (4) on the marginal tax rate t(y).

$$\frac{t(y)}{1-t(y)} = \left(1 + \frac{1}{\varepsilon}\right) \frac{1 - F(w)}{wf(w)} \left[1 - S(w)\right]$$

$$S(w) = \frac{1}{\left[1 - F(w)\right]} \int_{W}^{Z} \frac{G'[V(x, T(xL))]}{\lambda} f(x) dx$$

To understand the social planner arbitrage: Imagine a small increase of the tax paid by W agents: dT

-TAX REDUCTION: 
$$TR = \frac{t(W)}{1 - t(W)} \cdot \frac{W \cdot f(W)}{1 + 1/\varepsilon} \cdot dT$$

-TAX INCREASE: TI = [1 - F(W)] dT

-LUMP SUM REDISTRIBUTION: TI - TR

-IN TERMS OF WELFARE: A + B + C = 0

 $0 + [1 - F(W)].S(W).dT + (TI - TR).S(w_0) = 0$ 

The main qualitative results:

A) t(y) always lies between 0 and 1 from f.o.c. of agent utility maximization

B) T(highest productivity)= T(lowest productivity)=0

C) Compute T(y) and see what it looks like

## Saez (2002) discrete version model

The Social Planner problem is:  

$$\begin{aligned}
& \underset{w_{0}}{\text{Max}}_{[T_{0},...T_{I}]} \int_{w_{0}}^{Z} \alpha(w) V(w) f(w) dw \\
& \text{s.t:} \quad (c_{i}^{*}, i^{*}) = \operatorname{Argmax} \left\{ U(w, c_{i}, i); c_{i} = Y_{i} - T_{i}, i \in [0, 1, ...I] \right\} \\
& \quad V[w] = U(w, c^{*}, i^{*}) \\
& \quad \sum_{i} h_{i} T_{i} \geq \overline{T}
\end{aligned}$$

*h<sub>i</sub>* is the % of agents choosing *I*; *T<sub>i</sub>* is net tax paid by group *I The optimal tax formula is:*  $T_i - T_{i-1} = 1 \quad \sum_{k=1}^{I} \left[ 1 \quad \sum_{k=1}^{I} T_j - T_0 \right]$ 

$$\frac{T_i - T_{i-1}}{C_i - C_{i-1}} = \frac{1}{\mu_i h_i} \sum_{j \ge i} h_j \left[ 1 - g_j - \chi_j \frac{T_j - T_0}{C_j - C_0} \right]$$

 $-C_i$  is the net household income of group *i*,

-Non-workers receive benefits  $-T_o$ , by definition identical to  $C_o$ .

$$g_i = \frac{1}{\lambda h_i} \int_{w \in i} \alpha(w) \frac{\partial V(w)}{\partial c_i} f(w)$$

is the marginal weight the government assigns to group *i*. This weight represents the value (expressed in terms of public funds) of giving an additional dollar to an individual in group *i*.  $\lambda$  is the Lagrange multiplier associated to the aggregate budget constraint. The **intensive elasticity** is defined as:

$$\mu_{i} = \frac{C_{i} - C_{i-1}}{h_{i}} \frac{dh_{i}}{d(C_{i} - C_{i-1})}$$

And it is related with the classical one with:

$$\mu_i = \frac{Y_i}{Y_i - Y_{i-1}} \varepsilon_i$$

The extensive elasticity is

$$\chi_i = \frac{C_i - C_0}{h_i} \frac{dh_i}{d(C_i - C_0)}$$

# Application of the Mirrlees model to some European Country España, France, UK, Italia (10000 observations); $\varepsilon = 0.1$ et $\varepsilon = 0.5$ .

Utilité sociale G()



$$(1-q)H_0 + q\frac{H_0}{b} = 1$$

•q = 20% •b calibrated in order to guarantee a minimum income equal to 50% of average income in each country (with  $\varepsilon$  = 0.1) [T(0)].

Figure 1. Forme de la fonction de bien-être social [G()]

$$\begin{cases} \frac{t}{1-t} = \left[1 + \frac{1}{\varepsilon}\right] * \left[\frac{1}{wf(w)}\right] * \left[1 - F(w)\right] * \left[1 - H_0\right] & \text{if } w > w_q \\ \frac{t}{1-t} = \left[1 + \frac{1}{\varepsilon}\right] * \left[\frac{1}{wf(w)}\right] * \left[F(w) * \left(\frac{H_0}{b} - 1\right)\right] & \text{if } w \le w_q \end{cases}$$





# "Inversion of the optimal problem" (see Kurz 1968, Ahmad and Stern 1984), Bourguignon and Spadaro (2000; 2007).

$$H[L(w), V(w), \mu(w), \lambda] = [G(V) + \lambda (wL - c - Q)]f(w) + \mu(w) \frac{L}{w} B_L(L)$$
$$\frac{\partial H(0)}{\partial L} = \lambda (w - B_L)f(w) + \mu(w) \frac{(LB_L)_L}{w} = 0$$
$$\frac{\partial H(0)}{\partial V} = -\frac{\partial \mu(w)}{\partial w} \Rightarrow [G'(0) - \lambda]f(w) = -\frac{\partial \mu(w)}{\partial w}$$
$$\frac{t(y)}{1 - t(y)} = \left(1 + \frac{1}{\varepsilon}\right) \frac{1 - F(w)}{wf(w)} \left[1 - \frac{S(w)}{S(w_0)}\right]$$

$$S(w) = \frac{1}{\left[1 - F(w)\right]} \int_{W}^{Z} \frac{G'\left[V(x, T(xL))\right]}{\lambda} f(x) dx$$

It is well-known (for the **Mangasarian theorem**) that the Pontryagin Maximum Principle that leads to the optimality conditions (p. foc 1) and (p.foc 2) are **necessary and sufficient** provided that H(.) is **differentiable and concave** in the variables (L, V) jointly. Given that in our case H is separable in (L, V), the Mangasarian theorem needs that:

D)  $\frac{\partial^2 G(.)}{\partial V^2} < 0$  (e.g. the concavity of social welfare function. It ensures the concavity of the Hamiltonian with respect to V).

E) 
$$\frac{\mu(w)}{\lambda} < wf(w) \frac{B_{LL}}{[LB_L]_{LL}}$$
 (from  $\frac{\partial^2 H(I)}{\partial L^2} < 0$  it ensures the concavity of the Hamiltonian with respect to the control variable *L*).

**Consistency** with agent maximizing behavior and Spence-Mirrlees condition (this condition ensure that the first order approach to the incentive compatibility constraint is sufficient, see Ebert 1992).

A) t(y) < 1 for any w (from the f.o.c. of problem 1.2);

B) 
$$t'(y) > \frac{U_{LL} + U_{cc} [w(1-t(y))]^2}{w^2 U_c} = \frac{U_{LL}}{w^2} = -\frac{(1-t(y))}{\varepsilon y}$$
 for any *w* (from the s.o.c. of problem 1.2);

C)  $\frac{\partial C}{\partial w} > 0$  without taxes; this is the Spence-Mirrlees condition

If one of the conditions A, B, C, D and E does not hold, then it is the whole optimization concept behind Mirrlees framework that would become doubtful. It would indeed be very difficult to assume that the redistribution authority attempts to maximize a non-concave welfare function if other than trivial redistributions policies are observed.

Of course, from a mathematical point of view we cannot completely rule out a maximizing behavior. The point is that we are not able to characterize it.

### If, on the contrary, conditions A, B, C, D and E hold then:

$$S(w) = I - \frac{t(y)}{1 - t(y)} \frac{\varepsilon}{1 + \varepsilon} \frac{w \cdot f(w)}{1 - F(w)} \qquad \qquad \frac{t(y)}{1 - t(y)} = \left(1 + \frac{1}{\varepsilon}\right) \frac{1 - F(w)}{w f(w)} \left[1 - \frac{S(w)}{S(w_0)}\right]$$

$$\frac{G'\left[V(w,T(y)\right]}{\lambda} = 1 + \left(\frac{\varepsilon}{1+\varepsilon}\right) \left(\frac{t(y)}{1-t(y)}\right) \left[1 + \eta(w) + \nu(y)\frac{1+\varepsilon}{1-t(y)+\varepsilon\nu(y)t(y)}\right]$$

 $\nu(y) = yt'(y)/t(y) \qquad \qquad \eta(w) = wf'(w)/f(w)$ 

**Proposition 1**. A necessary condition for the social welfare function making the observed effective marginal tax rate schedule, t(w), optimal with respect to the observed distribution of productivities, f(w) to be Paretian - e.g. non-decreasing everywhere- is that :

$$t(w) \leq \frac{\frac{1+\varepsilon}{\varepsilon} \frac{1-F(w)}{w.f(w)}}{1+\frac{1+\varepsilon}{\varepsilon} \frac{1-F(w)}{w.f(w)}} \quad for \ all \ w \in [w_0, Z]$$

Alternative interpretation: Laffer Bound Test

Where the distribution may be approximated by a Pareto with parameter *a*, given that  $\frac{w.f(w)}{[1-F(w)]} = a$ , it comes that:  $t(w) \le \frac{1+1/\varepsilon}{1+1/\varepsilon + a}$ 

For instance, with not unreasonable figures like a = 3 and  $\varepsilon = 0.5$ , this condition states that a redistribution system where the marginal tax rate would exceed 50 per cent could be deemed 'optimal' only on the basis of a non-Paretian social welfare function.

**Proposition 2**. If the elasticity of the marginal tax rate and the density function are bounded, then there exists a threshold for the wage elasticity of labor supply below which the social welfare function is necessarily non-decreasing everywhere.

$$\frac{G'\left[V(w,T(y)\right]}{\lambda} = 1 + \left(\frac{\varepsilon}{1+\varepsilon}\right) \left(\frac{t(y)}{1-t(y)}\right) \left[1 + \eta(w) + \nu(y)\frac{1+\varepsilon}{1-t(y)+\varepsilon\nu(y)t(y)}\right]$$

This property shows the importance of the assumption made on the wage sensitivity of labor supply to judge the optimality of a given redistribution system. Any redistribution system may be said to optimize a Paretian social welfare function, provided that the redistribution authority has a low enough estimate of the wage elasticity of labor supply.

**Proposition 3**. Wherever the marginal tax rate is increasing with income, a sufficient condition for the social welfare function to be everywhere non-decreasing is:

$$t(w) \le \frac{1+\varepsilon}{1-\eta(w)\varepsilon}$$
(12)

Again, this proposition is directly derived from (9). It is of relevance in connection with the discussion on whether the marginal tax rate curve must be U-shaped – see Diamond (1998) and Saez (2001). In that part where the marginal tax rate is increasing, that is for high incomes, (12) gives an upper limit for the marginal tax rate – in the reasonable case where is negative evol course.

## **Income Effects**

U(c, L) = A(c) - B(L)  $\frac{t(y)}{1 - t(y)} \psi[c(w)] = (1 + \frac{1}{\varepsilon}) \cdot \frac{1 - F(w)}{w \cdot f(w)} \cdot [\overline{\psi}[c(w)] - S(w)]$   $\psi[c(w)] = \frac{1}{A'(c)} \qquad \overline{\psi}[c(w)] = \frac{1}{1 - F(w)} \int_{w}^{z} \psi[c(w)] f(x) dx$ 

**Proposition 4.** A necessary condition for the social welfare function to be Paretian is that :

$$t(y) \leq \frac{\frac{1+\varepsilon}{\varepsilon} \frac{1-F(w)}{w.f(w)} \frac{\overline{\psi}[c(w)]}{\psi[c(w)]}}{1+\frac{1+\varepsilon}{\varepsilon} \frac{1-F(w)}{w.f(w)} \frac{\overline{\psi}[c(w)]}{\psi[c(w)]}} \quad \text{for all } w \in [w_0, Z]$$

Note that  $\frac{\overline{\psi}[c(w)]}{\psi[c(w)]} \ge I$  implies that the inclusion of income effect mitigate the possibility to be Non Paretian.

## Empirical Implementation: A) individual vs household level; B) net vs gross rate of taxation. 3 key ingredients

#### 1) estimates of the elasticity of labor supply, $\epsilon$

In the case of France, Bourguignon and Magnac (1991), Piketty (1998), Donni (2000), Bargain (2005), Choné et al. (2003) and Laroque and Salanié (2002). Values between **0.1-0.2 are found for men** and an average of **0.5 is found for married women** - and slightly more **(0.6 to 1) if they have children** (Piketty 1998, Pavot and Spadaro 2008. This second result is mainly driven by participation effects.

#### which is the right one for households?..second member..!

2) the distribution f(w)you can use wages or "productivities" i.e:  $w = Y^{\frac{1}{1+\varepsilon}} [k(1-t(Y))]^{\frac{-\varepsilon}{1+\varepsilon}}$ 

3) the marginal rate of taxation, t(w): computed by microsimulation model (net and gross)  $\Delta Taxes + \Delta Benefits$ ,  $\Delta Yd$ 

$$t(y) = \frac{\Delta Iaxes + \Delta Benefits}{\Delta Gross \ Income} = 1 - \frac{\Delta Ia}{\Delta y}$$

-Important: t(w), f(w) and derivatives computed by Adaptive kernel smoothing techniques.

Problems with:

- 1) Irrational behavior: ...solved à la Hausman
- 2) Scarcity of data at the upper tails of the distribution: ....only for the last 4-5 centiles



Figure 2. Kernel wage densities for singles: net and gross scenario





Figure 5. Kernel productivity densities for singles

Figure 6. Social marginal welfare for singles (on productivities)

Figure 8. Kernel productivity densities for all households



Figure 7. Gross kernel smoothed marginal tax rates for all

## Figure 9. Social marginal welfare for all household (on productivities)



## Figure 10. Paretianity test on social marginal welfare for singles (on gross wages) with income effects



#### Intensive vs Extensive labour supply framework

Saez (2002), [Laroque (2005); Blundell et al. (2006)]

$$\frac{T_i - T_{i-1}}{C_i - C_{i-1}} = \frac{1}{\mu_i h_i} \sum_{j \ge i}^{I} h_j \left[ 1 - g_j - \chi_j \frac{T_j - T_0}{C_j - C_0} \right]$$

-Ti is net tax paid by group i and

-Ci is the net household income of this group,

-Non-workers receive benefits -TO, by definition identical to CO.

-gi, the marginal weight the government assigns to group i. This weight represents the value (expressed in terms of public funds) of giving an additional dollar to an individual in group i.

The **intensive elasticity** is defined as:

And it is related with the classical one with:

$$\mu_i = \frac{C_i - C_{i-1}}{h_i} \frac{c_{i-1}}{d(C_i - C_{i-1})}$$
$$\mu_i = \frac{Y_i}{Y_i - Y_{i-1}} \varepsilon_i$$

 $C_{i} - C_{i-1}$  dh:

The extensive elasticity is

$$\chi_i = \frac{C_i - C_0}{h_i} \frac{dh_i}{d(C_i - C_0)}$$

$$g_{i} = 1 - \chi_{i} \frac{T_{i} - T_{0}}{C_{i} - C_{0}} - \mu_{i} \frac{T_{i} - T_{i-1}}{C_{i} - C_{i-1}} + \frac{1}{h_{i}} \sum_{j=i+1}^{I} h_{j} \left[ 1 - g_{j} - \chi_{j} \frac{T_{j} - T_{0}}{C_{j} - C_{0}} \right]$$

$$g_0 = (1 - \sum_{i=1}^{I} h_i g_i) / h_0$$

$$g_I = 1 - \chi_I \frac{T_I - T_0}{C_I - C_0} - \mu_I \frac{T_I - T_{I-1}}{C_I - C_{I-1}}$$

Note that if participation elasticity = 0:

$$\frac{T_{I} - T_{I-1}}{C_{I} - C_{I-1}} \leq \frac{1}{\mu_{I}}$$

Equivalent of Proposition 1 (Paretianity condition)

- Sample of singles aged 18 to 65, in which students and individuals with non-labor income above 10 per cent of total income are eliminated
- The final sample used in this exercise contains 1028 singles (963 working).
- The rate of nonlabor force participation (zero yearly earnings reported) for this group is around 9 percent.
- We present only the case in which the redistribution system includes income taxes, assimilated contributions like the 'Cotisation Sociale Généralisée', all noncontributory benefits and the contribution to health insurance (this redistribution system has been referred to as 'gross' in the previous section).

|    | Y <sub>i</sub> | Ci     | Ti     | h <sub>i</sub> | <i>F</i> (Y) |
|----|----------------|--------|--------|----------------|--------------|
| 0  | 0              | 12000  | -12000 | 0,09           | 9%           |
| 1  | 48857          | 35919  | 12939  | 0,08           | 17%          |
| 2  | 74340          | 54398  | 19942  | 0,09           | 26%          |
| 3  | 91116          | 64926  | 26190  | 0,09           | 35%          |
| 4  | 105954         | 73144  | 32811  | 0,09           | 44%          |
| 5  | 121247         | 80750  | 40497  | 0,09           | 53%          |
| 6  | 135790         | 87779  | 48011  | 0,09           | 63%          |
| 7  | 152870         | 95747  | 57122  | 0,09           | 72%          |
| 8  | 175352         | 106173 | 69179  | 0,09           | 81%          |
| 9  | 215857         | 123988 | 91869  | 0,09           | 90%          |
| 10 | 408454         | 217915 | 190539 | 0,10           | 100%         |

| Scenario |   |               |               |   | Scenario |               |               |               |
|----------|---|---------------|---------------|---|----------|---------------|---------------|---------------|
| Α        | i | Low (0, 1, 2) | High (others) |   |          | i             | Low (0, 1, 2) | High (others) |
|          | χ | 0             | 0             | F | χ        | 0.5           | 0             |               |
|          | Е | 0.1           | 0.1           |   |          | Е             | 0.5           | 0.5           |
| В        | i | Low (0, 1, 2) | High (others) |   |          | i             | Low (0, 1, 2) | High (others) |
|          | χ | 0             | 0             | G | χ        | 1             | 0             |               |
|          | Е | 0.5           | 0.5           |   |          | Е             | 0             | 0.1           |
| С        | i | Low (0, 1, 2) | High (others) | н | i        | Low (0, 1, 2) | High (others) |               |
|          | χ | 0.5           | 0             |   | χ        | 1             | 0             |               |
|          | Е | 0             | 0.1           |   | Е        | 0.1           | 0.1           |               |
| D        | 1 | Low (0, 1, 2) | High (others) |   |          | i             | Low (0, 1, 2) | High (others) |
|          | χ | 0.5           | 0             |   | χ        | 1             | 0             |               |
|          | Е | 0.1           | 0.1           |   | Е        | 0.5           | 0.1           |               |
| E        | 1 | Low (0, 1, 2) | High (others) | L | i        | Low (0, 1, 2) | High (others) |               |
|          | χ | 0.5           | 0             |   | χ        | 1             | 0             |               |
|          | Е | 0.5           | 0.1           |   | Е        | 0.5           | 0.5           |               |



## Figure 11. Social marginal weights for singles gross wages (scenario A and scenario B)





# Optimal Taxation, Social Contract and The Four Worlds of Welfare Capitalism

## The starting point:

In their excellent survey about the debate regarding Esping-Andersen's typology of welfare states, Arts and Gelissen (2002) reconstruct several typologies of welfare states in order to establish, first, whether real welfare states are quite similar to others or whether they are rather unique specimens, and, second, whether there are three ideal-typical worlds of welfare capitalism or more.

They conclude that "real welfare states are hardly ever pure types and are usually hybrid cases and that the issue of idealtypical welfare states cannot be satisfactorily answered given the lack of formal theorizing and the still inconclusive outcomes of comparative research. In spite of this conclusion there is plenty of reason to continue to work on and with the original or modified typologies".

#### **Objectives:**

- a) Check if it is possible to justify the most salient features of existing systems by some optimal tax argument à la "Mirrlees (1971)". Diamond (1998), Saez (2001, 2002), Salanié (1998), Piketty (1997), Choné and Laroque (2005), Bourguignon and Spadaro (2000; 2002, 2007)
- b) Offer a formal theorizing allowing the identification (if possible) of *ideal-typical welfare states* in the spirit of the Esping Andersen (1992) qualitative analysis of European welfare regimes.

#### What we do:

 a) we use the formal setting of the optimal tax theory to try to identify the level of Rawlsianism of some European social planner starting from the observation of the real data and redistribution systems and

**b)** we use it as a test of the Esping Andersen (and others) classification.

**How: w**ith the "Inversion of the optimal problem" technique (see Kurz 1968, Ahmad and Stern 1984), Bourguignon and Spadaro (2007).

#### **Results**

- a) Redistribution systems in these countries are consistent with the hypothesis of an optimizing redistribution authority.
- b) There appears to be a clear coincidence of high decommodification and high Rawlsianism in the Scandinavian, social-democratically influenced welfare states (Denmark). There is an equally clear coincidence of low decommodification and utilitarianism in the Anglo–Saxon liberal model (UK) and in the Southern European welfare states (Italy and Spain). Finally, the Continental European countries (Finland, Germany and France) group closely together in the middle of the scale, as corporatist and etatist. Applied Optimal Taxation validates Esping Andersen.

### **Definition:**

### Degree of decommodification:

the degree to which a (social) service is rendered as a matter of right and the degree to which a person can maintain a livelihood without reliance on the market

## Claim:

A redistribution system allowing for a high level of subsidies directed to non working people implies a high level of decommodification

⇒ there is a strong analogy between a social planner that want to "decommodificate" individuals and the Rawlsian social planner in an optimal tax model

|                                | Social democracy | Corporativist               | Liberal                   | Southern-<br>European |
|--------------------------------|------------------|-----------------------------|---------------------------|-----------------------|
| Degree of decommodification    | Strong           | Medium                      | Weak                      | Weak                  |
| Ideological reference<br>point | Universalism     | Social Hierarchy.<br>Family | Individual responsibility | Family                |
| Representative<br>Countries    | Denmark          | Finland,<br>Germany, France | UK                        | Spain, Italy          |

### Welfare States classification [Arts and Gelissen (2002)]

## Theory

The Social Planner problem is:  $\begin{aligned}
& \underset{w_{0}}{\text{Max}}_{[T_{0},...T_{I}]} \int_{w_{0}}^{z} \alpha(w) V(w) f(w) dw \\
& \text{s.t:} \quad (c_{i}^{*}, i^{*}) = \operatorname{Argmax} \left\{ U(w, c_{i}, i); c_{i} = Y_{i} - T_{i}, i \in [0, 1, ...I] \right\} \\
& \quad V[w] = U(w, c^{*}, i^{*}) \\
& \quad \sum_{i} h_{i} T_{i} \geq \overline{T}
\end{aligned}$ 

*h<sub>i</sub>* is the % of agents choosing *I*; *T<sub>i</sub>* is net tax paid by group *I The optimal tax formula is:*  $\frac{T_i - T_{i-1}}{C_i - C_{i-1}} = \frac{1}{\mu_i h_i} \sum_{j \ge i}^{I} h_j \left[ 1 - g_j - \chi_j \frac{T_j - T_0}{C_j - C_0} \right]$ 

 $-C_i$  is the net household income of group *i*,

-Non-workers receive benefits  $-T_o$ , by definition identical to  $C_o$ .

$$g_i = \frac{1}{\lambda h_i} \int_{w \in i} \alpha(w) \frac{\partial V(w)}{\partial c_i} f(w)$$

is the marginal weight the government assigns to group *i*. This weight represents the value (expressed in terms of public funds) of giving an additional dollar to an individual in group *i*.  $\lambda$  is the Lagrange multiplier associated to the aggregate budget constraint. The **intensive elasticity** is defined as:  $\mu_i = \frac{C_i - C_{i-1}}{h_i} \frac{dh_i}{d(C_i - C_{i-1})}$ And it is related with the classical one with:  $\mu_i = \frac{Y_i}{Y_i - Y_{i-1}} \varepsilon_i$ The **extensive elasticity** is  $\chi_i = \frac{C_i - C_0}{h_i} \frac{dh_i}{d(C_i - C_0)}$ 

The inversion of the optimal problem (Bourguignon and Spadaro 2000, 2007)

$$g_{i} = 1 - \chi_{i} \frac{T_{i} - T_{0}}{C_{i} - C_{0}} - \mu_{i} \frac{T_{i} - T_{i-1}}{C_{i} - C_{i-1}} + \frac{1}{h_{i}} \sum_{j=i+1}^{I} h_{j} \left[ 1 - g_{j} - \chi_{j} \frac{T_{j} - T_{0}}{C_{j} - C_{0}} \right]$$
$$g_{0} = (1 - \sum_{i=1}^{I} h_{i} g_{i}) / h_{0}$$

$$g_I = 1 - \chi_I \frac{T_I - T_0}{C_I - C_0} - \mu_I \frac{T_I - T_{I-1}}{C_I - C_{I-1}}$$

1) Are social weights decreasing? (Global aversion to inequality)

2) Weights of group 0 ? (Rawlsianism and Decommodification)

3) What drives the results? (efficiency concerns....)
### **Data and selection**

| Country | Data                                   | Year   | size of selected | weighted no. of singles | proportion of all singles |
|---------|----------------------------------------|--------|------------------|-------------------------|---------------------------|
| Denmark | European Community Household Panel     | 1995   | 574              | 417,945                 | 40%                       |
| Finland | Income distribution survey             | 1998   | 1193             | 421,447                 | 38%                       |
| France  | Household Budget Survey                | 1994/5 | 1639             | 3,615,095               | 40%                       |
| Germany | German Socio-Economic Panel            | 1998   | 1387             | 8,242,791               | 43%                       |
| UK      | Family Expenditure Survey              | 1995/6 | 1227             | 5,172,454               | 47%                       |
| Italy   | Survey of Households Income and Wealth | 1996   | 1482             | 3,651,857               | 51%                       |
| Spain   | European Community Household Panel     | 1996   | 738              | 1,297,780               | 37%                       |

### Selection criteria:

- singles
- potential workers (no pensioners, no student, working age 18-60)
- no substantial capital income (max 10% of earned income)

### Incomes:

*Yi*: income from wage and self-employment income

*Ci*: includes taxes, contributions, transfers and (contributory) unemployment benefits (treated as redistributive transfer here)

Computed with EUROMOD

Market Income, Taxes, Benefits and Replacement Incomes, as a proportion of disposable incomes



#### All households



Bottom decile

Top decile

# **Application: defining groups**

Cut-off points (monthly gross income in EUR)

| nnt | groups     | Denmark      | Finland | France | Germany | Italy | Spain | UK   |
|-----|------------|--------------|---------|--------|---------|-------|-------|------|
| S   | 0          | 0            | 0       | 0      | 0       | 0     | 0     | 0    |
|     | 1          | 788          | 574     | 515    | 627     | 509   | 399   | 595  |
|     | 2          | 2050         | 1492    | 1338   | 1630    | 1322  | 1038  | 1548 |
|     | 3          | 2628         | 1823    | 1674   | 2094    | 1695  | 1331  | 1984 |
|     | 4          | 3942         | 2735    | 2511   | 3141    | 2543  | 1997  | 2976 |
|     | 5          | 5256         | 3646    | 3348   | 4188    | 3390  | 2662  | 3968 |
|     | Proportion | ns <i>hi</i> |         |        |         |       |       |      |
| \$  | groups     | Denmark      | Finland | France | Germany | Italy | Spain | UK   |
|     | 0          | 0.06         | 0.08    | 0.07   | 0.05    | 0.09  | 0.07  | 0.15 |
|     | 1          | 0.25         | 0.28    | 0.20   | 0.24    | 0.22  | 0.24  | 0.17 |
|     | 2          | 0.20         | 0.22    | 0.23   | 0.20    | 0.18  | 0.18  | 0.21 |
|     | 3          | 0.37         | 0.28    | 0.28   | 0.32    | 0.27  | 0.25  | 0.25 |
|     | 4          | 0.07         | 0.11    | 0.11   | 0.13    | 0.13  | 0.16  | 0.12 |
|     | 5          | 0.06         | 0.04    | 0.10   | 0.06    | 0.11  | 0.10  | 0.10 |

#### Gross and disposable monthly income in EUR

| groups | Denr           | mark | Fin  | land | Fra            | nce  | Ger            | many | lta            | aly  | Sp             | ain  | U              | K    |
|--------|----------------|------|------|------|----------------|------|----------------|------|----------------|------|----------------|------|----------------|------|
|        | Y <sub>i</sub> | Ci   | Yi   | Ci   | Y <sub>i</sub> | Ci   |
| 0      | 0              | 668  | 0    | 623  | 0              | 554  | 0              | 468  | 0              | 30   | 0              | 280  | 0              | 659  |
| 1      | 1432           | 1112 | 1109 | 969  | 907            | 918  | 1184           | 1019 | 686            | 569  | 749            | 917  | 1101           | 1149 |
| 2      | 2342           | 1523 | 1643 | 1242 | 1437           | 1186 | 1887           | 1306 | 1393           | 1068 | 1169           | 1326 | 1697           | 1491 |
| 3      | 3125           | 1858 | 2180 | 1537 | 2031           | 1584 | 2503           | 1620 | 1840           | 1359 | 1645           | 1629 | 2433           | 1903 |
| 4      | 4499           | 2424 | 3136 | 2027 | 2864           | 2216 | 3563           | 2229 | 2326           | 1650 | 2255           | 2054 | 3371           | 2575 |
| 5      | 6475           | 3650 | 4167 | 2670 | 4201           | 3084 | 5013           | 3180 | 3944           | 2697 | 3187           | 2711 | 4811           | 3595 |

Arbitrary definitions but attempt to make it comparable across countries

**Type 0**: from 0 to part-time paid at minimum wage (rare observation in-between)

**Type 1**: working poor (up to 1.3x the minimum wage)

Type 2: up to median income

**Type 3**: up to 1.5 x median income

**Type 4**: up to 2 x median income

Type 5: above

### **Empirical evidence: Labor supply elasticity of Singles: a brief review**

|                                                         | Country            | Data                     | Selection                                  | Extensive<br>elasticity                   | Intensive<br>elasticity                   |
|---------------------------------------------------------|--------------------|--------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|
| Kleven and Kreiner (2006a, 2006b)                       | Denmark            | ECHP 97-98               | singles                                    | 0.45                                      | 0.2                                       |
| Bargain and Orsini (2006)                               | Finland            | IDS 97                   | single women                               | 0.18 - 0.33                               | 0.18 - 0.34                               |
| Bargain and Orsini (2006)<br>Laroque and Salanie (2001) | France<br>France   | HBS 95<br>Tax revenue 97 | single women<br>single women               | 0.04 - 0.07<br>0.36                       | 0.08 - 0.14                               |
| Bargain and Orsini (2006)<br>Haan and Steiner (2005)    | Germany<br>Germany | GSOEP 98<br>GSOEP 02     | single women<br>single women<br>single men | 0.08 - 0.15<br>0.01 - 0.09<br>0.06 - 0.19 | 0.09 - 0.18<br>0.02 - 0.24<br>0.09 - 0.28 |
| Aaberge et al. (1998)                                   | Italy              | SHIW 1993                | single women<br>single men                 | 0.06<br>0.08                              | 0.10<br>0.11                              |
| Labeaga, Oliver and Spadaro (2007)                      | Spain              | ECHP 95                  | singles                                    | 0.2                                       | 0.1                                       |
| Blundell and MaCurdy (1999)                             | UK                 | FES 1980                 | singles                                    | 0.24                                      |                                           |

### **Application: extensive elasticity**

Participation elasticity in this model:

$$\chi_i = \frac{C_i - C_0}{h_i} \frac{\partial h_i}{\partial (C_i - C_0)}$$

- Classical participation elasticities from the literature correspond to 1% increase in  $Y_i$  rather than in  $C_i C_0 = Y_i (T_i + C_0)$
- In most cases,  $T_i + C_0 > 0$  so that  $C_i C_0$  increase by more than 1% and  $\chi_i$  is overstated by usual estimates
- The inverse is true only when  $T_i < -C_{0,i}$  i.e. when transfers to working poor are very large

### Numerical application:

For low incomes [for group 0 to 2 (approx.  $1^{st}$  half)]: empirical estimated values in each countries. For high income = 0.

### **Application: intensive elasticity**

Earnings (mobility) elasticity

$$\mu_i = \frac{C_i - C_{i-1}}{h_i} \frac{\partial h_i}{\partial (C_i - C_{i-1})}$$

Classical wage elasticity of labor supply

$$\varepsilon_i = \frac{1 - \tau_i}{Y_i} \frac{\partial Y_i}{\partial (1 - \tau_i)}$$
 with EMTR  $\tau_i = \frac{T_i - T_{i-1}}{Y_i - Y_{i-1}}$ 

Relating  $\mu$  and  $\epsilon$ :

$$\mu_i(Y_i - Y_{i-1}) = \varepsilon_i Y_i$$

Numerical application (in terms of  $\epsilon$ ):

Empirical estimated values in each countries dividing in low [for group 0 to 2 (approx. 1<sup>st</sup> half)] and high income groups.

### First intuition given by budget constraints for hypothetical households

Singles (low incomes)



### **Results: mixed model**



**Income groups** 

# Conclusions

### Results in line with general intuition on welfare regimes

### Equity concerns

- "flat" redistributive tastes in Southern Europe and to some extent in the UK
- generous SA translates into high weight on group 0 in Nordic countries, Germany and France; relatively flat for other groups = close to Rawlsian preferences

### **Efficiency concerns**

- group 1: large distortion (high phase-out rate, esp. in Nordic countries) rationalised by lower social weights
- gap between weights on groups 0 and 1 even larger if high participation elasticity (=reason to accept distortions rationalised by social preferences)

### More generally:

a) Result suggests that the redistribution systems in these countries are consistent with the hypothesis of an optimizing redistribution authority.

### Limits

- 1. income taxes and benefits are only a very small part of the welfare state. In this sense, our contribution must be seen as a step toward the construction of formal theorizing allowing for better understanding the nature of welfare system and, eventually, to better define (if possible) ideal-typical models starting from the analysis of real welfare state.
- 2. it is natural to think that real world tax-benefit schedules result more from political economy forces than from the pursuit of some well defined social objective. Even though, deriving and comparing social welfare functions implicit in each national system provide a new way to compare countries' tastes for redistribution as embodied in tax-benefit systems.
- 3. The family dimension is completely missing in our analysis. This is an important shortcoming given that the role of the family, and in particular, the substitutability between state and families in providing protection against decommodification risks, is one of the pillars of the EA analysis.

### Future work:

- 1. account for changes over time are desirable. In particular, recent trend toward EITC schemes in Europe may translate a change in social preferences, or the recognition of the disincentive effects.
- 2. more attention must be paid to the role of unemployment benefits and social contributions
- 3. treats social preferences as endogenously determined
- 4. dynamic dimension of the construction of the welfare state. Given the importance of the issue of intergenerational solidarity and the role of welfare state in his enhancement it would be interesting, for example, to try to fix a link between the ideal typology proposed in the "EA and others" literature and the theoretical literature on the optimal design of pensions system

# Indirect Tax Reforms: The Case of Spain

Alternative title of the presentation:

When the MATHS can say something about real world.... For example: It is possible to implement Pareto improving indirect tax reforms in Spain?

Related work:

- India (Ahmad and Stern,1984)
- Norway (Christiansen and Jansen, 1978),
- Belgium (Decoster and Schokkaert, 1990),
- *Canada (Cragg, 1991),*
- Germany (Kaiser and Spahn, 1989),
- Italy (Brugiavini and Weber, 1988 and Liberati, 2001)
- Pakistan (Ahmad and Stern, 1991).
- Ireland (Madden, 1995)
- Greece (Kaplanoglou and Newbery, 2003)

# <u>The theory (Diamond-Mirrlees):</u>

- Production side:
  - Constant returns to scale.
  - Producer prices (p) are fixed.
- The government requires an amount T of resources collected via taxes (t) on goods.
  Goods are indexed by i, i=1...N.
- Household factor incomes are fixed.
  - Consumer price:  $q_i = p_i + t_i \longrightarrow dq = dt$ .
  - Household are indexed by h, h=1...H.

# The Problem:

The government solves the following maximization problem:

$$\begin{aligned} & \underset{\{t_1, t_2, \dots, t_n\}}{\text{Max.}} W = W \Big( V^1 \big( q_1, \dots, q_n \big), V^2 \big( q_1, \dots, q_n \big), \dots, V^H \big( q_1, \dots, q_n \big) \Big) \\ & \text{st.} \quad T = \sum_{i=1}^n t_i X_i \qquad \text{where} \quad X_i = \sum_{h=1}^H x_i^h \end{aligned}$$
Solving with K.T.

$$L = W \Big( V^1(q_1, \dots, q_n), V^2(q_1, \dots, q_n) \dots, V^H(q_1, \dots, q_n) \Big) + \lambda \left( \sum_{i=1}^n t_i X_i - \overline{T} \right)$$

Definition *Marginal Revenue Cost*: cost at the margin in terms of revenue forgone when a tax is lowered so as to provide one extra unit in welfare



 $\tau$  is the tax on good k as a proportion of consumer price and  $\varepsilon$  is the uncompensated cross-price elasticity of good k with respect to good i

f.o.c implies that MRC ( $\lambda$ ) should be equal for all goods.

# PARETO IMPROVING TAX REFORM PRINCIPLE:

# if $MRC_i > MRC_s$ then higher $t_i$ and lower $t_s$

Second order conditions are satisfied given the concavity of the Social Welfare Function.

Four elements of data:

- 1. Household expenditure on goods (from a survey).
- 2. Demand derivatives (from a demand system estimation).
- 3. Effective taxes.
- 4. Welfare weights.

# 1. Spanish Household Budget Continuous Survey:

- Provided by the 'Instituto Nacional de Estadística'.
- Available since 1984.
- It provides trimester and annual information about household resources and their expenditure on goods.
- The survey established the interview of households throughout 8 quarters.
- We used a longitudinal panel for year 1998. It has 9.891 observations and it represents 12.089.302 households and a population of 39.505.758.

## 2. Demand system estimation:

- Quadratic Almost Ideal Demand System (QUAIDS) for 16 commodities groups.
- The sample for the demand system estimation covers the period 1985-1997. (Change of methodology)
- Method of estimation: two stage least squares and non-linear instrumental variables.

# 3. Taxes:

• We use the effective taxes for each commodity group that was computed using a weighting sum of the different taxes for each good.

### Some descriptive statistics and the effective taxes:

|                               | Expendit | ure per equiva | lent adult            |                 |                      |
|-------------------------------|----------|----------------|-----------------------|-----------------|----------------------|
| Commodities                   | mean     | median         | standard<br>deviation | budget<br>share | Effective<br>tax (%) |
| 1.Food & non-alcoholic drinks | 1821.72  | 1675.40        | 1028.28               | 0.1995          | 6.037                |
| 2.Alcoholic beverages         | 79.83    | 18.46          | 170.95                | 0.0077          | 16                   |
| 3.Tobacco                     | 179.20   | 86.43          | 248.13                | 0.0196          | 16                   |
| 4.Clothing & footwear         | 729.01   | 554.75         | 689.14                | 0.0708          | 16                   |
| 5.Housing expenditure         | 2242.79  | 1962.82        | 1410.55               | 0.2398          | 0                    |
| 6.House keeping & services    | 918.65   | 668.06         | 924.31                | 0.0896          | 15.87                |
| 7.Fuel for housing            | 130.12   | 83.70          | 130.83                | 0.0139          | 16                   |
| 8.Services                    | 307.94   | 154.24         | 457.82                | 0.0290          | 2.46                 |
| 9.Petrol                      | 374.90   | 263.89         | 437.28                | 0.0362          | 16                   |
| 10.Private transport services | 290.24   | 156.15         | 392.70                | 0.0258          | 9.13                 |
| 11.Public transport services  | 98.20    | 18.98          | 185.80                | 0.0094          | 7                    |
| 12.Communications             | 202.65   | 166.41         | 166.95                | 0.0210          | 16                   |
| 13.Leisure                    | 1584.18  | 1080.10        | 1754.09               | 0.1362          | 6.98                 |
| 14.Education                  | 192.46   | 30.30          | 393.97                | 0.0163          | 12.64                |
| 15. Other non-durable goods   | 178.94   | 103.88         | 298.27                | 0.0183          | 11.56                |
| 16.Durable goods              | 1025.48  | 188.43         | 2606.16               | 0.0670          | 16                   |

## 4. Definition of welfare weights

Consider an additive iso-elastic social welfare function (Atkinson):

1

$$W = \sum_{h} U^{h}$$

where 
$$\begin{cases} U^{h}(I^{h}) = \frac{k(I^{n})^{1-e}}{1-e} & \text{if } e \ge 0, e \ne 1\\ U^{h}(I^{h}) = k \log(I^{h}) & \text{if } e = 1 \end{cases}$$
$$U'(I^{h}) = \beta^{h} = \left(\frac{I^{1}}{I^{h}}\right)^{e} \end{cases}$$

Where I<sup>h</sup> is the equivalent income of household h

### Values of $\lambda_i$ for different levels of inequality aversion. The higher the rank the higher the taxes (ex. *Other non-durable goods*)

| Commodities                   | Effective tax<br>(%) | e=0     | rank | e=1     | rank | e=2    | rank | e=5    | rank |
|-------------------------------|----------------------|---------|------|---------|------|--------|------|--------|------|
| 1.Food & non-alcoholic drinks | 6.037                | 0.9816  | 12   | 0.4025  | 10   | 0.2056 | 6    | 0.0722 | 5    |
| 2.Alcoholic beverages         | 16                   | 1.1698  | 5    | 0.4435  | 4    | 0.2119 | 5    | 0.0668 | 6    |
| 3.Tobacco                     | 16                   | 1.3537  | 2    | 0.5499  | 2    | 0.2774 | 2    | 0.0953 | 2    |
| 4.Clothing & footwear         | 16                   | 0.9604  | 15   | 0.3564  | 15   | 0.1661 | 15   | 0.0485 | 13   |
| 5.Housing expenditure         | 0                    | 1.1183  | 9    | 0.4360  | 6    | 0.2170 | 4    | 0.0750 | 4    |
| 6.House keeping & services    | 15.87                | 1.0021  | 11   | 0.3701  | 12   | 0.1754 | 11   | 0.0551 | 11   |
| 7.Fuel for housing            | 16                   | 1.1377  | 7    | 0.4417  | 5    | 0.2189 | 3    | 0.0761 | 3    |
| 8.Services                    | 2.46                 | 0.9811  | 13   | 0.3593  | 14   | 0.1669 | 14   | 0.0495 | 12   |
| 9.Petrol                      | 16                   | 1.1468  | 6    | 0.4265  | 7    | 0.1982 | 8    | 0.0578 | 8    |
| 10.Private transport services | 9.13                 | 1.2956  | 3    | 0.4573  | 3    | 0.2044 | 7    | 0.0563 | 9    |
| 11.Public transport services  | 7                    | 0.9717  | 14   | 0.3601  | 13   | 0.1710 | 12   | 0.0553 | 10   |
| 12.Communications             | 16                   | 1.1158  | 10   | 0.4168  | 8    | 0.1977 | 9    | 0.0613 | 7    |
| 13.Leisure                    | 6.98                 | 1.1213  | 8    | 0.3842  | 11   | 0.1676 | 13   | 0.0445 | 15   |
| 14.Education                  | 12.64                | 0.8244  | 16   | 0.2700  | 16   | 0.1136 | 16   | 0.0282 | 16   |
| 15. Other non-durable goods   | 11.56                | 26.9443 | 1    | 10.3604 | 1    | 5.0223 | 1    | 1.6167 | 1    |
| 16.Durable goods              | 16                   | 1.2179  | 4    | 0.4149  | 9    | 0.1785 | 10   | 0.0447 | 14   |

## Observation (1):

(a) The rank correlations suggest that the rankings, and thus the tax reform recommendations, show relatively strong sensitivity to the value of *e*. See for example the rank correlation among foods and leisure

- This result suggests that distributional considerations matter a lot in the ranking of goods.
- Indirect taxes seem to be a relatively efficient means of addressing distributional issues and reducing inequality in Spain.
- This is in contrast with previous results on Developed Countries.

```
Observation (2):
```

(b) Need to correct externalities. The consumption of goods such as alcohol, tobacco and petrol may give rise to social costs, which can be reduced by the imposition of corrective taxes.

Since we do not incorporate such effects in this model, it is possible that the observed rankings of these goods is explained by this factor.

Redistribution and Polarization Impact of the European Redistribution Architecture: an Analysis Using Microsimulation Techniques

Amedeo Spadaro

Paris School of Economics and Universitat de les Illes Balears, Palma de Mallorca

Xisco Oliver Universitat de les Illes Balears, Palma de Mallorca

> Luca Piccoli Paris School of Economics

#### Introduction

- Recent trends in economic and socio-demographic variables determined the rise of new demands of social protections that the actual Spanish model is unable to fully cover. For that reason, in the last years, the political and economic debate has been characterized by several proposals pushing for the reform of the Spanish welfare state.
- Spain belongs to what has been called "the Southern European (or Mediterranean)" welfare state regime (Esping Andersen 1990, 1999, Ferrera, 1996).
- Some reform proposals look toward a system more market oriented. Their reference model is the liberal type of welfare capitalism, which embodies individualism and the primacy of the market (for example, the UK system).
- There are also supporters of the Continental Europe Bismarkian social protection models. They push for the adoption of the so-called world of conservative corporatist welfare states, which is typified by a moderate level of decommodification (for example, the French system).
- Finally there are proposals of reforms in the spirit of the universalism observed in the Northern European countries: the so-called social-democratic world of welfare capitalism (for example, the Danish system).

|                                | Social democracy | Corporativist               | Liberal                   | Southern-<br>European |
|--------------------------------|------------------|-----------------------------|---------------------------|-----------------------|
| Degree of decommodification    | Strong           | Medium                      | Weak                      | Weak                  |
| Ideological reference<br>point | Universalism     | Familiarism                 | Individual responsibility | Familiarism           |
| Representative<br>Countries    | Denmark          | Finland,<br>Germany, France | UK                        | Spain, Italy          |

Whatever reform is implemented, it is important to have a clear picture of the impact it may cause on the economy.

In what follow we try to offer some elements of evidence of these effects. We will analyse the impact upon efficiency, income distribution and polarization of the replacement of the actual Spanish redistribution system with several European schemes (one for each "model"). In particular we simulate schemes similar to the ones enforced in France, UK and Denmark (corporatist, liberal and socialdemocratic respectively).

The efficiency, inequality and polarization analysis will be performed using behavioural microsimulation techniques.

#### The two main aims of the contribution are:

1) to offer some elements of clarification of the debate regarding the reforms of the welfare state in Spain by perform comparatives with other European welfare state regimes and

2) to show the potential of behavioural microsimulation models as powerful tools for the ex ante evaluation of public policies and their distributional and polarization impacts.

### **Definitions** (Bourguignon and Spadaro, JoEI 2006):

•Microsimulation models allow simulating the effects of a policy on a sample of economic agents (individual, households, firms) at the individual level.

•Policy evaluation is based on representations of the economic environment of individual agents, their budget constraints and possibly their behavior.

•A policy simulation then consists of evaluating the consequences of a change in the economic environment induced by a policy reform on a vector of indicators of the activity or welfare for each individual agent in a sample of observations.

#### GladHispania is a microsimulation model of the Spanish Tax-Benefit system

- It is a:
  - Static
  - Partial equilibrium
  - With behavior
- It focuses on direct taxation (PIT and SS)
- It allows to simulate any change in those figures
- It uses the Spanish ECHP as a database

**Simulated scenarios:** The baseline is the 1999 Spanish tax-benefit system.

In order to simulate a system with the UK characteristics, we have simulated the following instruments: the income tax, the child benefit, the working families' tax credit and the income support.

The French redistribution instruments that we model are: the "allocations familiales", the "Revenue Minimum d'Insertion", and the income tax.

The simulated social-democratic scenario is a simplification of the Danish one. In particular we model <u>family allowances</u>, <u>social assistance</u> and <u>personal income taxation</u>.

| Spanish system <sup>1</sup> |          | UK sy  | /stem    | French | system <sup>2</sup> | Danish system |                     |  |
|-----------------------------|----------|--------|----------|--------|---------------------|---------------|---------------------|--|
| up to                       | Tax rate | up to  | Tax rate | up to  | Tax rate            | allowance     | Tax rate            |  |
| 3,606                       | 18.0%    | 2,956  | 10%      | 3,947  | 0.0%                | 4,481         | 6.25%               |  |
| 12,621                      | 24.0%    | 48,284 | 22%      | 7,764  | 10.5%               | 23,867        | 6.00%               |  |
| 24,642                      | 28.3%    | over   | 40%      | 13,667 | 24.0%               | 37,148        | 15.00%              |  |
|                             |          | 48,284 |          |        |                     |               |                     |  |
| 39,666                      | 37.2%    |        |          | 22,129 | 33.0%               |               |                     |  |
| 66,111                      | 45.0%    |        |          | 36,007 | 43.0%               | 4,481         | 31.75% <sup>3</sup> |  |
| over                        | 48.0%    |        |          | 44,404 | 48.0%               |               |                     |  |
| 66,111                      |          |        |          |        |                     |               |                     |  |
|                             |          |        |          | over   | 54.0%               |               |                     |  |
|                             |          |        |          | 44,404 |                     |               |                     |  |

Notes: (1) PIT tax rates schedules in 1999 are the same in 2001 (2) The tax schedule for France refers to the 1998 system. (3) In Denmark there is an important local tax that varies across regions. We have taken an average tax rate of 31.75%, which respect the total maximum marginal tax of 59%.



Budget constraints: couple + 2 children





Figure 2b: Couples - Spouse

Figure 2b: Couples – Household head



# Model specification and estimation: Aaberge et al. (1995) and van Soest (1995).

- Characteristics:
  - An utility function is estimated directly
  - There are a finite number of alternatives (K)

 $h_j = \{h_1, h_2, \dots, h_K\}$ 

- Procedure:
  - There are *i* individuals and *j* alternatives
- We adopt the flexible quadratic utility function (as in Keane and Moffit, 1998, and Blundell *et al.*, 2000):

$$U^*(y, h, Z) = \alpha_{yy} y^2 + \alpha_{hh} h^2 + \alpha_{yh} yh + \beta_y(Z) y + \beta_h (Z) h + \varepsilon_{hi}$$

for the singles subsample, and

$$U^{*}(y,h_{h},h_{c},Z_{h},Z_{c},Z) = \alpha_{yy}y^{2} + \alpha_{h_{h}h_{h}}h_{h}^{2} + \alpha_{h_{c}h_{c}}h_{c}^{2} + \alpha_{yh_{h}}yh_{h} + \alpha_{yh_{c}}yh_{c} + \alpha_{h_{h}h_{c}}h_{h}h_{c} + \beta_{y}y + \beta_{h_{h}}h_{h} + \beta_{h_{c}}h_{c} + \varepsilon_{h_{h}h_{c}}$$

for couples.

- *y* = disposable income fixed costs
- It is assumed that individuals choose the alternative that maximizes his utility

# Model specification and estimation: Log-likelihood

• We assume that  $\epsilon$  follows a Weibull distribution

$$P_{ik} = \Pr(V_{ik} \ge V_{ij}, \forall j = 1, ..., J) = \frac{\exp[U(y_{ik}, L_k, X_i; v_k)]}{\sum_{i=1}^{J} \exp[U(y_{ij}, L_j, X_i; v_j)]}$$

• The log-likelihood function:

$$\ln L = \sum_{i=1}^{N} \sum_{j=1}^{J} d_{j} \ln(P_{ij})$$

This is the McFadden or conditional logit model

## Singles estimation

# Couples estimation

| Variable                      | Coefficient | Standard error | Variable                                              | Coefficient | Standard |
|-------------------------------|-------------|----------------|-------------------------------------------------------|-------------|----------|
|                               |             |                |                                                       |             | Error    |
| Income <sup>2</sup>           | -0.41       | 0.50           | Income <sup>2</sup>                                   | -0.71       | 0.16     |
| Hours of leisure <sup>2</sup> | -236.95     | 32.44          | Hours of leisure of the household's head <sup>2</sup> | -83.69      | 6.30     |
| Income x Hours of leisure     | 29.06       | 5.81           | Hours of leisure of the spouse <sup>2</sup>           | 91.98       | 8.01     |
|                               |             |                | Income x Hours of leisure of the                      | -2.74       | 1.51     |
| Income                        | -25.54      | 6.77           | household's head                                      |             |          |
| x Age                         | 0.50        | 0.25           | Income x Hours of leisure of the spouse               | -1.69       | 1.01     |
| x Education                   | 0.04        | 0.84           | Hours of leisure of the household's head x            | -44.8       | 7.98     |
| x Children                    | 0.19        | 0.16           | Hours of leisure of the spouse                        |             |          |
| Hours of leisure              | 458.94      | 65.24          | Income                                                | 8.20        | 2.37     |
| x Age                         | -0.49       | 1.53           | x Age of the household's head                         | -0.60       | 0.48     |
| x Educ1                       | -4.19       | 3.93           | x Age of the spouse                                   | 1.54        | 0.55     |
| x Educ2                       | 0.39        | 2.89           | x Age of the spouse $^2$                              | -0.63       | 0.19     |
| Fixed costs                   | 2.40        | 0.50           | Hours of leisure of the household's head              | 197.53      | 17.25    |
|                               |             |                | x Education of the household's head                   | -5.68       | 1.81     |
| Number of observations        | 259         |                | x Age of the household's head                         | 2.19        | 0.67     |
| Log likelihood                | -273.84     |                |                                                       |             |          |
|                               |             |                | Hours of leisure of the spouse                        | -117.38     | 17.65    |
|                               |             |                | x Education of the spouse                             | -11.1       | 1.20     |
|                               |             |                | x Age of the spouse                                   | 2.02        | 0.61     |
|                               |             |                | x 1(one dependent child)                              | 2.82        | 0.95     |
|                               |             |                | x 1(two or more dependent children)                   | 5.05        | 0.90     |
|                               |             |                | Fixed costs                                           | -0.35       | 0.26     |
|                               |             |                | Number of observations                                | 1024        |          |
|                               |             |                | Log likelihood                                        | -1553.81    |          |

|                                        | Results: Efficiency                 |         |          |      |       |       |       |       |       |       |        |
|----------------------------------------|-------------------------------------|---------|----------|------|-------|-------|-------|-------|-------|-------|--------|
|                                        |                                     | Spanisł | n system |      |       |       |       |       |       |       |        |
| Combin<br>working<br>(housef<br>head_s | ation of<br>hours<br>hold<br>pouse) | 0_0     | 0_25     | 0_40 | 40_0  | 40_25 | 40_40 | 50_0  | 50_25 | 50_40 | total  |
|                                        | 0_0                                 | 0.62    | 0.00     | 0.00 | 0.10  | 0.00  | 0.10  | 0.31  | 0.00  | 0.00  | 1.14   |
|                                        | 0_25                                | 0.00    | 0.10     | 0.00 | 0.21  | 0.00  | 0.00  | 0.00  | 0.00  | 0.10  | 0.41   |
|                                        | 0_40                                | 0.10    | 0.00     | 3.52 | 0.31  | 0.31  | 0.41  | 0.10  | 0.10  | 0.00  | 4.86   |
|                                        | 40_0                                | 0.00    | 0.00     | 0.00 | 36.71 | 0.00  | 0.10  | 0.21  | 0.10  | 0.10  | 37.23  |
|                                        | 40_25                               | 0.00    | 0.00     | 0.00 | 0.00  | 6.72  | 0.00  | 0.00  | 0.00  | 0.10  | 6.83   |
|                                        | 40_40                               | 0.00    | 0.00     | 0.10 | 0.00  | 0.00  | 17.37 | 0.10  | 0.00  | 0.00  | 17.58  |
| C                                      | 50_0                                | 0.00    | 0.00     | 0.00 | 0.00  | 0.00  | 0.00  | 22.23 | 0.00  | 0.00  | 22.23  |
| systen                                 | 50_25                               | 0.00    | 0.00     | 0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 2.28  | 0.00  | 2.28   |
| Danish                                 | 50_40                               | 0.00    | 0.00     | 0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 7.45  | 7.45   |
|                                        | total                               | 0.72    | 0.10     | 3.62 | 37.33 | 7.03  | 17.99 | 22.96 | 2.48  | 7.76  | 100.00 |
|                                                               |       | Spanish system |       |      |       |        |         |        |       |       |        |
|---------------------------------------------------------------|-------|----------------|-------|------|-------|--------|---------|--------|-------|-------|--------|
| Combination of<br>working hours<br>(household<br>head_spouse) |       | 0_0            | 0_25  | 0_40 | 40_0  | 40_25  | 40_40   | 50_0   | 50_25 | 50_40 | total  |
|                                                               | 0_0   | 0.72           | 0.00  | 0.00 | 0.00  | 0.00   | 0.10    | 0.00   | 0.00  | 0.00  | 0.83   |
|                                                               | 0_25  | 0.00           | 0.10  | 0.00 | 0.00  | 0.00   | 0.00    | 0.00   | 0.00  | 0.00  | 0.10   |
|                                                               | 0_40  | 0.00           | 0.00  | 3.62 | 0.10  | 0.00   | 0.00    | 0.00   | 0.00  | 0.00  | 3.72   |
|                                                               | 40_0  | 0.00           | 0.00  | 0.00 | 36.40 | 0.00   | 0.00    | 0.00   | 0.10  | 0.00  | 36.50  |
|                                                               | 40_25 |                |       |      |       |        |         |        |       |       |        |
|                                                               |       | 0.00           | 0.00  | 0.00 | 0.00  | 6.83   | 0.00    | 0.10   | 0.00  | 0.00  | 6.93   |
|                                                               | 40_40 |                |       |      |       |        |         |        |       |       |        |
|                                                               |       | 0.00           | 0.00  | 0.00 | 0.00  | 0.00   | 17.79   | 0.10   | 0.00  | 0.00  | 17.89  |
| ſ                                                             | 50_0  | 0.00           | 0.00  | 0.00 | 0.83  | 0.00   | 0.10    | 22.75  | 0.00  | 0.00  | 23.68  |
| sten                                                          | 50_25 |                |       |      |       |        |         |        |       |       |        |
| ı sy                                                          |       | 0.00           | 0.00  | 0.00 | 0.00  | 0.10   | 0.00    | 0.00   | 2.38  | 0.00  | 2.48   |
| ench                                                          | 50_40 |                |       |      |       |        |         |        |       |       |        |
| Fr€                                                           |       | 0.00           | 0.00  | 0.00 | 0.00  | 0.10   | 0.00    | 0.00   | 0.00  | 7.76  | 7.86   |
|                                                               | total | 0.72           | 0.10  | 3.62 | 37.33 | 7.03   | 17.00   | 22.06  | 2 / 8 | 7.76  | 100.00 |
|                                                               |       | -0.12          | -0.10 | 3.02 |       | - 1.00 | - 11.33 | -22.30 | 2.40  |       |        |

|                                                               |       | Spanish | n system |      |       |       |       |       |       |       |        |
|---------------------------------------------------------------|-------|---------|----------|------|-------|-------|-------|-------|-------|-------|--------|
| Combination of<br>working hours<br>(household<br>head_spouse) |       | 0_0     | 0_25     | 0_40 | 40_0  | 40_25 | 40_40 | 50_0  | 50_25 | 50_40 | total  |
|                                                               | 0_0   | 0.72    | 0.00     | 0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.72   |
|                                                               | 0_25  | 0.00    | 0.10     | 0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.10   |
|                                                               | 0_40  | 0.00    | 0.00     | 3.62 | 0.21  | 0.00  | 0.10  | 0.00  | 0.00  | 0.00  | 3.93   |
|                                                               | 40_0  | 0.00    | 0.00     | 0.00 | 37.13 | 0.00  | 0.00  | 0.31  | 0.10  | 0.10  | 37.64  |
|                                                               | 40_25 | 0.00    | 0.00     | 0.00 | 0.00  | 7.03  | 0.00  | 0.00  | 0.00  | 0.10  | 7.14   |
|                                                               | 40_40 | 0.00    | 0.00     | 0.00 | 0.00  | 0.00  | 17.89 | 0.00  | 0.00  | 0.00  | 17 89  |
|                                                               | 50_0  | 0.00    | 0.00     | 0.00 | 0.00  | 0.00  | 0.00  | 22.65 | 0.00  | 0.00  | 22.65  |
| JK system                                                     | 50_25 | 0.00    | 0.00     | 0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 2.38  | 0.00  | 2.38   |
|                                                               | 50_40 | 0.00    | 0.00     | 0.00 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 7.55  | 7.55   |
|                                                               | total | 0.72    | 0.10     | 3.62 | 37.33 | 7.03  | 17.99 | 22.96 | 2.48  | 7.76  | 100.00 |

## Results: Efficiency

With such evidence, two points should be stressed:

- 1. the majority of households are on the diagonal, which implies that they do not alter their labour supply;
- 2. the higher the marginal tax rate, the greater are the labour supply effects.

It is also interesting to look at changes in labour supply behaviour of spouses. It must be noted that, in around 95% of the sample, they are women. It is clear that female labour supply and participation is stimulated under the Danish system. 0.53% of women increase their labour supply after the reform (Danish system) against 0.1% under the French system and -0.11% under the UK system.

## The measure of polarization

According the axiomatic discussion in Duclos, Esteban and Ray (2004) the functional form of T(i, a) is chosen such that

$$P_{\alpha}(f) \equiv \iint f(x)^{1+\alpha} f(y) |x - y| dy dx,$$

where  $\alpha$  is arbitrary chosen such that  $\alpha \in [.25,1]^6$ .

Finally, considering any distribution function F with associated density f and mean  $\mu$ , the polarization index can be written as

$$P_{\alpha}(F) = \int_{y} f(y)^{\alpha} a(y) dF(y),$$
  
with  $a(y) = \mu + y(2F(y) - 1) - 2 \int_{-\infty}^{y} x dF(x).$ 

An individual located at x in the distribution of the characteristic feels alienation with respect to another individual located at y according to their distance |x - y| and identifies with the group depending on the density at x, f(x).

A hybrid measure of polarization in which both identification and alienation may depend on income and other characteristics is

$$P^*(\boldsymbol{F}) = \sum_{j=1}^M \sum_{k \neq j} \iint_{x y} f_j(x)^{\alpha} |x - y| dF_j(x) dF_j(y).$$

## Results: Inequality and Polarization



## Results: Inequality and Polarization

| Table 8. Inequality and Polarization indexes |          |              |             |                 |           |  |  |
|----------------------------------------------|----------|--------------|-------------|-----------------|-----------|--|--|
|                                              | Gini     | alpha = 0.25 | alpha = 0.5 | alpha =<br>0.75 | alpha = 1 |  |  |
| Spanish                                      | 0.3604   | 0.2735       | 0.2206      | 0.1845          | 0.1577    |  |  |
| system                                       | (0.0053) | (0.0031)     | (0.0022)    | (0.0018)        | (0.0018)  |  |  |
| UK system                                    | 0.3084   | 0.2463       | 0.2086      | 0.1831          | 0.1644    |  |  |
|                                              | (0.0037) | (0.0024)     | (0.0018)    | (0.0016)        | (0.0017)  |  |  |
| French                                       | 0.3373   | 0.2631       | 0.2172      | 0.1854          | 0.1616    |  |  |
| system                                       | (0.0044) | (0.0027)     | (0.0020)    | (0.0017)        | (0.0016)  |  |  |
| Danish                                       | 0.2230   | 0.1982       | 0.1901      | 0.1909          | 0.1975    |  |  |
| system                                       | (0.0040) | (0.0027)     | (0.0024)    | (0.0027)        | (0.0034)  |  |  |

| Table   | 11. Polarization by age class |          |          |          | _         |
|---------|-------------------------------|----------|----------|----------|-----------|
|         |                               | Spanish  | Danish   | French   | UK system |
|         |                               | system   | system   | system   |           |
|         | Less than 35                  | 0.3291   | 0.1811   | 0.2731   | 0.2643    |
|         |                               | (0.0132) | (0.0094) | (0.0073) | (0.0087)  |
| ici     | Between 35 and 60             | 0.3467   | 0.2193   | 0.3120   | 0.2975    |
| Ū       |                               | (0.0073) | (0.0057) | (0.0060) | (0.0050)  |
|         | More than 60                  | 0.3680   | 0.2272   | 0.3733   | 0.3236    |
|         |                               | (0.0081) | (0.0057) | (0.0071) | (0.0070)  |
|         | Less than 35                  | 0.2125   | 0.1615   | 0.1983   | 0.1881    |
| 5       |                               | (0.0064) | (0.0064) | (0.0042) | (0.0043)  |
| a=      | Between 35 and 60             | 0.2143   | 0.1792   | 0.2066   | 0.2003    |
| hq      |                               | (0.0031) | (0.0032) | (0.0028) | (0.0023)  |
| a       | More than 60                  | 0.2372   | 0.2447   | 0.2478   | 0.2422    |
|         |                               | (0.0042) | (0.0052) | (0.0041) | (0.0046)  |
|         | Less than 35                  | 0.1533   | 0.1681   | 0.1619   | 0.1514    |
| <u></u> |                               | (0.0046) | (0.0066) | (0.0045) | (0.0034)  |
| pha=    | Between 35 and 60             | 0.1541   | 0.1764   | 0.1599   | 0.1559    |
|         |                               | (0.0024) | (0.0035) | (0.0023) | (0.0019)  |
| a       | More than 60                  | 0.1866   | 0.3643   | 0.1968   | 0.2303    |
|         |                               | (0.0045) | (0.0129) | (0.0047) | (0.0069)  |

| Table 12            | Table 12. Polarization by gender for singles (no children) |          |          |          |          |  |  |  |
|---------------------|------------------------------------------------------------|----------|----------|----------|----------|--|--|--|
|                     |                                                            | Spanish  | Danish   | French   | UK       |  |  |  |
|                     |                                                            | system   | system   | system   | system   |  |  |  |
|                     | Couples                                                    | 0.3478   | 0.2141   | 0.3228   | 0.2981   |  |  |  |
|                     |                                                            | (0.0056) | (0.0043) | (0.0047) | (0.0040) |  |  |  |
|                     | Males                                                      | 0.4021   | 0.2373   | 0.3801   | 0.3427   |  |  |  |
| Ū                   |                                                            | (0.0161) | (0.0134) | (0.0154) | (0.0135) |  |  |  |
|                     | Females                                                    | 0.4275   | 0.1620   | 0.4237   | 0.3088   |  |  |  |
|                     |                                                            | (0.0245) | (0.0228) | (0.0255) | (0.0274) |  |  |  |
|                     | Couples                                                    | 0.2157   | 0.1868   | 0.2123   | 0.2034   |  |  |  |
| 2                   |                                                            | (0.0023) | (0.0026) | (0.0021) | (0.0019) |  |  |  |
| а<br>П              | Males                                                      | 0.2467   | 0.2364   | 0.2481   | 0.2328   |  |  |  |
| hdl                 |                                                            | (0.0093) | (0.0127) | (0.0102) | (0.0088) |  |  |  |
| ធ                   | Females                                                    | 0.2982   | 0.2724   | 0.3336   | 0.2811   |  |  |  |
|                     |                                                            | (0.0216) | (0.0394) | (0.0252) | (0.0283) |  |  |  |
|                     | Couples                                                    | 0.1566   | 0.2027   | 0.1617   | 0.1615   |  |  |  |
| $\overline{\Sigma}$ |                                                            | (0.0019) | (0.0041) | (0.0018) | (0.0017) |  |  |  |
| <b>a</b> =          | Males                                                      | 0.1750   | 0.2974   | 0.1860   | 0.1888   |  |  |  |
| lph                 |                                                            | (0.0076) | (0.0206) | (0.0083) | (0.0098) |  |  |  |
| ື້                  | Females                                                    | 0.3084   | 0.7559   | 0.3927   | 0.4082   |  |  |  |
|                     |                                                            | (0.0297) | (0.1099) | (0.0380) | (0.0471) |  |  |  |

| Table 13. Polarization by education |           |          |          |          |           |  |  |  |
|-------------------------------------|-----------|----------|----------|----------|-----------|--|--|--|
|                                     |           | Spanish  | Danish   | French   | UK system |  |  |  |
|                                     |           | system   | system   | system   |           |  |  |  |
|                                     | Graduate  | 0.3139   | 0.2550   | 0.3025   | 0.2750    |  |  |  |
|                                     |           | (0.0131) | (0.0106) | (0.0104) | (0.0087)  |  |  |  |
| ī                                   | Secondary | 0.2988   | 0.2029   | 0.2792   | 0.2631    |  |  |  |
| C                                   |           | (0.0116) | (0.0080) | (0.0092) | (0.0088)  |  |  |  |
|                                     | Primary   | 0.3304   | 0.1913   | 0.3049   | 0.2814    |  |  |  |
|                                     |           | (0.0052) | (0.0036) | (0.0040) | (0.0040)  |  |  |  |
|                                     | Graduate  | 0.2061   | 0.1897   | 0.2041   | 0.1912    |  |  |  |
| 2                                   |           | (0.0066) | (0.0060) | (0.0054) | (0.0043)  |  |  |  |
| a<br>n                              | Secondary | 0.2010   | 0.1804   | 0.1981   | 0.1903    |  |  |  |
| hql                                 |           | (0.0056) | (0.0060) | (0.0050) | (0.0043)  |  |  |  |
| J                                   | Primary   | 0.2108   | 0.1846   | 0.2071   | 0.2004    |  |  |  |
|                                     |           | (0.0021) | (0.0026) | (0.0019) | (0.0019)  |  |  |  |
|                                     | Graduate  | 0.1557   | 0.1609   | 0.1546   | 0.1487    |  |  |  |
| <u>~</u>                            |           | (0.0048) | (0.0047) | (0.0036) | (0.0029)  |  |  |  |
| <b>Ja</b> =                         | Secondary | 0.1482   | 0.1799   | 0.1527   | 0.1515    |  |  |  |
| Idh                                 |           | (0.0032) | (0.0076) | (0.0035) | (0.0030)  |  |  |  |
| <u></u>                             | Primary   | 0.1529   | 0.2165   | 0.1568   | 0.1647    |  |  |  |
|                                     |           | (0.0017) | (0.0047) | (0.0015) | (0.0020)  |  |  |  |

| Tab               | Table 14. Polarization by working position |          |          |          |           |  |  |  |
|-------------------|--------------------------------------------|----------|----------|----------|-----------|--|--|--|
|                   |                                            | Spanish  | Danish   | French   | UK system |  |  |  |
|                   |                                            | system   | system   | system   |           |  |  |  |
|                   | Other positions                            | 0.3696   | 0.2087   | 0.3444   | 0.3057    |  |  |  |
|                   |                                            | (0.0064) | (0.0033) | (0.0056) | (0.0045)  |  |  |  |
| ici               | Employee                                   | 0.2851   | 0.2134   | 0.2788   | 0.2489    |  |  |  |
| Ū                 |                                            | (0.0082) | (0.0051) | (0.0069) | (0.0044)  |  |  |  |
|                   | Self employed                              | 0.3755   | 0.1918   | 0.2779   | 0.2927    |  |  |  |
|                   |                                            | (0.0183) | (0.0101) | (0.0132) | (0.0095)  |  |  |  |
|                   | Other positions                            | 0.2286   | 0.2059   | 0.2280   | 0.2163    |  |  |  |
| 2                 |                                            | (0.0029) | (0.0028) | (0.0029) | (0.0025)  |  |  |  |
| a=                | Employee                                   | 0.1950   | 0.1737   | 0.1940   | 0.1805    |  |  |  |
| hql               |                                            | (0.0040) | (0.0028) | (0.0034) | (0.0020)  |  |  |  |
| ื่อ               | Self employed                              | 0.2324   | 0.1739   | 0.1981   | 0.1992    |  |  |  |
|                   |                                            | (0.0097) | (0.0070) | (0.0077) | (0.0046)  |  |  |  |
|                   | Other positions                            | 0.1681   | 0.2565   | 0.1763   | 0.1866    |  |  |  |
| $\overline{\sum}$ |                                            | (0.0028) | (0.0062) | (0.0028) | (0.0032)  |  |  |  |
| 12=               | Employee                                   | 0.1585   | 0.1694   | 0.1574   | 0.1510    |  |  |  |
| lph               |                                            | (0.0034) | (0.0031) | (0.0027) | (0.0015)  |  |  |  |
| a                 | Self employed                              | 0.1670   | 0.1939   | 0.1669   | 0.1629    |  |  |  |
|                   |                                            | (0.0073) | (0.0085) | (0.0066) | (0.0043)  |  |  |  |

The results show that the scenarios simulated have little impact on the efficiency of the economy (as measured by labour supply effects).

Concerning inequality the Danish system is the best one. To a lower degree, a result in this same direction can be achieved also adopting the French and UK systems.

However, when we take into consideration income polarization the situation is much less clear:

The results of our analysis in term of polarization show how important it is to consider not only redistribution effects. The decision of which reform should be implemented appears not so easy as if we were considering only income inequality.

Question: how much a policy maker should weight this additional polarization information?