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This paper investigates Mirrlees’ model of optimal income taxation. It provides a concrete 
example of utility and density functions for which the solution to the usual (first-order) model is 
not implementable, i.e. an example where the first-order approach does not work. Adding 
second-order conditions leads to an extended model and to implementable solutions. If these 
conditions are binding one gets a kink in the optimal net-income schedule and bunching of 
individuals occurs. The properties of an optimal nonlinear income tax are reexamined within the 
extended model. 

1. Introduction 

This paper deals with the derivation and the properties of an optimal 
nonlinear income tax. These questions were first investigated by the import- 
ant paper of Mirrlees published in 1971. In this and later papers [Mirrlees 
(1971, 1976, 1986)] he provides an economic model which takes into account 
some essential aspects of optimal income taxation, namely the choice 
between labour and leisure and the different abilities of workers. Further- 
more, he proposes a corresponding formal model and succeeds in describing 
its solution. 

In the formal model the first-order conditions resulting from utility 
maximization are taken into consideration. The question arises whether this 
procedure is sufficient to guarantee the implementability of the tax system. 
Mirrlees (1976) investigates this problem. He concludes that a tax system is 
implementable if and only if the first-order conditions are satisfied and if the 
resulting optimal gross income is a nondecreasing function of ability. The 
second part ensures that more able individuals also earn higher incomes. 
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Mirrlees apparently assumes that this condition is satisfied automatically. He 
states [Mirrlees (1976, p. 335)]: ‘It is this circumstance that makes the 
income-tax problem studied in Mirrlees (1971) manageable’. In his earlier 
paper [Mirrlees (1971, pp. 182-183)] he deals with the topic as well and 
writes ‘. . . This [equation (30)] does not yet prove global maximization of 
utility, but that also is true.’ On the other hand Mirrlees was the first who 
pointed out that the first-order approach, i.e. using only the first-order 
conditions, can lead to the wrong results [cf. the unpublished paper Mirrlees 
(1975) and Mirrlees (1986)]. 

The present paper is concerned with this issue. It compares the first- and 
second-order approaches. The usual formal model used by Mirrlees and 
others is extended by the additional condition that the optimal gross income 
is a nondecreasing function of ability (which is equivalent to the second- 
order conditions for utility maximization). Furthermore, we present a class of 
problems which is completely and explicitly solved within the framework of 
the first-order model. Using this solution we demonstrate by a concrete 
example that the first-order approach may be inappropriate. The resulting 
optimal income tax function is not always nondecreasing. Thus it cannot be 
implemented. This implies that the second-order approach is necessary to 
cope with the problem of optimal income taxation. Within this extended 
model it is now possible to give a rigorous explanation for the problem of 
bunching. In this case there are some individuals who possess different 
abilities, but choose the same combination of gross income and consumption. 
The phenomenon is connected with a kink in the net-income schedule if it 
occurs at an interior income. It is shown that bunching is necessary if and 
only if the optimal tax obtained in the usual Mirrlees model is not 
implementable (i.e. if the first-order approach is insufficient). 

An extension of the first-order model was derived in Brito and Oakland 
(1977), Mirrlees (1986) and independently in Ebert (1986a). But Brito and 
Oakland did not prove that the second-order conditions are necessary. Their 
contribution seems to have been overlooked by the profession. To the best 
knowledge of the author there is no paper in the literature using their model. 
On the other hand, the example provided in this paper proves that the 
implementability of the tax system must be taken into account explicitly. 
Therefore the final section of this paper reexamines the properties of an 
optimal nonlinear income tax within the extended model. In order to obtain 
definite results, again the necessary conditions for the solution to the 
planner’s optimization problem are considered. 

It turns out that most of the results known about the income tax are also 
true in the second-order model. Furthermore, some new results can be 
derived. It is possible that bunching occurs at the lower end of the income 
scale at a positive gross income z. In this case the marginal tax rate is strictly 
positive at z. This changes the result of Seade’s theorem 2 [Seade (1977)]. 



U. Ebert, Optimal nonlinear income tax 49 

(Seade admits bunching only at z=O.) Furthermore, it can be proved as well 
that bunching cannot occur at the highest income level. Finally, we get the 
result that the marginal rate of tax is strictly positive at all ‘interior’ incomes, 
i.e. at all income levels but possibly the smallest or highest level. This result 
supports Seade’s interpretation [Seade (1977, 1982)] that a nonzero marginal 
tax is a means to transfer income. 

The plan of this paper is as follows. Section 2 and section 3 describe the 
various models and their solutions. Section 4 presents the explicit solution 
and an example. In section 5 the properties of an optimal nonlinear income 
tax are discussed and section 6 concludes the paper. All proofs are relegated 
to the appendices. 

2. The model 

This section provides a description of Mirrlees’ model. The presentation is 
based on Mirrlees (1971, 1986), Brito and Oakland (1977), Roberts (1979), 
and Ebert (1986a). 

There are two commodities, consumption x and time y spent on work. All 
individuals have the same preference ordering which can be represented by 
an ordinal utility function. To impose certain distributional preferences the 
government chooses a special cardinalization u(x, y). u is increasing in 
consumption x, decreasing in labour y, strictly concave, and twice differenti- 
able. We assume that consumption is a normal good and leisure a 
noninferior good. 

Every individual possesses a specific ability (marginal productivity) n. 
Working y units of time he or she is able to provide y. n (efficiency) units of 
labour and to produce y. n units of the consumption good. We choose 
consumption as numeraire and can interpret n as wage rate and z=y. n as 
gross income. An individual of type n maximizes his or her utility function 
U(x,z, n): =u(x,z/n) subject to the budget constraint. Defining the marginal 
rate of substitution of gross income for consumption by 

s(x,z,n):=-+>O, 
X 

we have the property of 

Agent monotonicity (AM) 

s,: = L s(x, z, n) < 0. 
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It is an (ordinal) property of the common preference ordering which is 
implied by the fact that consumption is a normal good.’ As a consequence 
of (AM) the indifference curves in an (x,z) diagram are flatter the higher is 
an individual’s wage rate. For a linear income tax (AM) yields that more 
able individuals earn higher incomes [cf. Hellwig (1986)]. The distribution of 
abilities is described by a continuous density function f(n) which is assumed 
to be strictly positive on an interval [n_, ti], ? > 0. Each individual is able to 
earn income. 

The government knows the distribution of n and the utility function 
U(x,z, n). It cannot observe an individual’s ability n or time worked y, but 
only his or her gross income z=n.y. Given a tax schedule T: R+R which 
denotes the tax liability, the government can calculate an n individual’s net 
income x(n) and gross income z(n). Using this information the government 
wants to maximize social welfare (given by the utilitarian welfare function) 
by choosing T(z) 

1 Wx(n), 44, n)f(n) dn (SWF) 

subject to its budget constraint2 

1T(z(n))f(n)dn=j(z(n)-x(n))f(n)dn=O. 
n 

(BC) 

Deriving an optimal income tax the government has to take into account 
that each individual chooses a commodity bundle which is optimal for him 
or her given the tax schedule. Therefore the individual’s reactions have to be 
taken into consideration a priori. Mirrlees (1976) proposes the following 
method. Let (x(n),z(n)) denote the optimal plan of an n individual (as 
computed by the government). The n individual chooses this plan if it is 
better than all other possible plans 

U(x(n), z(n), n) 2 U(x(m), z(m), n) for all m E [PJ, ii], n E [r~, ii]. (SW 

If these conditions (self-selection constraints) are met, the tax system is 
implementable. [Remember that z(n)-x(n) is identical to an n individual’s 

‘Actually (AM) is weaker than normality of consumption. 
*In this case all taxes are redistributed. Of course it is also possible to raise a tax 

revenue ii # 0. 
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tax liability.] Mirrlees derives a minimization problem from (SSC). It yields 
the following necessary first-order conditions:3 

d0) 
dn- = u,(x(n), z(n), 4 WC) 

or 

U;x’(n)+ U;z’(n)=O, [FOCI 

i.e. the optimal level of utility u(n) of an n individual must coincide with the 
partial derivative U,. Here and in what follows we make the assumption that 
the solutions x(n), z(n), and u(n) are continuously differentiable almost 
everywhere. Moreover, the second-order conditions are equivalent to 

dz(n)>0 
dn = ’ 

ww 

which states that gross income is a nondecreasing function of ability n. More 
able individuals have to earn higher incomes. 

Now we are in a position to describe Mirrlees’ model precisely. 

Problem P. The government chooses an income tax schedule to maximize 
social welfare (SWF) subject to the conditions of the individual utility 
maximization (SSC) and its budget constraint (BC). 

This is a formulation of the underlying economic problem. In order to 
provide solutions we consider two further versions. 

Problem P*. Problem P* is the same as P, but the self-selection constraints 
(SSC) are replaced by the first-order conditions (FOC) and with the 
additional constraint that the optimal commodity bundles are continuously 
differentiable almost everywhere.4 

Problem P* is called the first-order version of the problem. We are mainly 
interested in the following second-order version, its implications, and its 
relationship to P*. 

Problem P**. Problem P** is the same as P* with the additional constraint 
that income is nondecreasing in ability (SOC). 

% Mirrlees (1971) eq. (FOC) is directly interpreted as the necessary first-order condition from 
utility maximization. 

“In the light of the monotonicity of z(n) this assumption seems to be acceptable. Weibull 
(1989) shows that x(n) and z(n) can be chosen as continuous functions. 
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In the next section we determine the necessary conditions for a solution to 
P* and P**. 

3. The solution to P* and P** 

Both optimization problems can be formulated as a maximum principle 
problem. The solution to P* is well known in the literature. Here Problem 
P** is investigated since it is an extension to P*. We choose the derivative of 
gross income w(n) =dz(n)/dn as the control variable. Gross income z(n), the 
optimal level of utility u(n), and the tax payments of all individuals that have 
an arbitrary n’sn, namely 

R(n):=i(z(n’,-x(n’))j(n’)dn’, 
n 

are defined as state variables. Because of the properties of the utility function 
U (monotonicity!) it is possible to compute x(n) for given u(n),z(n), and n, i.e. 
there exists a function h such that 

x = h( u, z, n), 

where u is a level of utility. Therefore x(n) should not be taken into account 
explicitly. 

In order to avoid dealing with singular solutions we transform the second- 
order condition (SOC) by means of an arbitrary strictly increasing twice 
differentiable nonlinear function g which has the properties g(0) =0 and 
g’(t) > 0. The solution does not depend on the choice of g. Then we obtain 
the following control problem. [Remember that x(n) = h(u(n),z(n), n)!] 

Find w(n), z(n), u(n), and R(n) s.t. 

[u(n)/(n) dn-+max, 

dz 
~ = w(n), 
dn 

$ = u,(x(n), z(n), 4, 

(1) 

(2) 

(3) g = (z(n) - x(n))f(n), 
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Obviously all restrictions of P** are taken into account. The budget 

constraint (BC) is reflected by the differential equation (3) and the boundary 
conditions (4) for R(n). The first-order conditions (FOC) determine u(n) by 
eq. (2). The second-order conditions (SOC) are incorporated directly by 
means of (1) and (5). 

Applying the maximum principle technique we define the Hamiltonian 

H = u(n) ..f(n) + 4n)(z(n) - x(n))_04 

+ 0) ~,W), 44 4 + v(n). w(n) + +Mw(n))2 

where K, ;1, p and v are adjoint variables, and we get’ the following 
necessary (first-order) conditions (which are listed for completeness): 

i3H 
aw=O=v+icg’(W), 

aH 

z- - - v’ = 1 j$ CM4 - x(n))ftn)l + P iz U,txtn), z(n), 4, 

aH 
~=-r'=ftn)+~~I(ztn)-x(n))f.tn)l+~.~U,(xtn),z(n),n), au 

aH 

aR- 
- - A’ = 0, 

transversality conditions, 

lc>o*%l 
dn ’ 

dz 
->o=rc=o. 
dn 

If we define 4(n): = K(n)g’(w(n)) and observe that h,= - UZ/UX=s, h,= l/U, 
and that 1 is constant, some tedious but elementary rearrangements and 
substitutions yield the following conditions, which are partly more familiar: 

‘Compare Bryson and Ho (1969). 
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(Pl*) 

w*) 

A?!) = .44 = 0, 

gqn)>O-- dz(4 = o 

dn ’ 

d-44 ___ >O*gqn)=O, 
dn 

&n_) = f$(ii) = 0. 

(P5**) 

(P6**) 

(P7**) 

These conditions can be directly interpreted. The important variable is 4(n). 
If 4(n) =O, the second-order conditions do not bind. Then the underlined 
term in eq. (Pl*) vanishes and (P4**)<P7**) are irrelevant. Gross income 
z(n) is a strictly increasing function of the ability n. (Pl*)gP3*) are the well- 
known necessary conditions for a solution of problem P*. In any case the 
expression (1 -s) in eq. (Pl*) plays an important role since it equals the 
marginal tax rate. Therefore it allows us to describe the optimal tax schedule. 

On the other hand, assume that 4(n)>O for n~(n,fi) and &~)=4($)=0. 
Then the second-order condition (SOC) is binding. (P5**) implies that all 
individuals who possess an ability no [Q, Z] earn the same gross income 
z(n) =z(Q) since dz(n)/dn =0 for n E [n,, fi]. Moreover, these individuals also 
get the same net income x(n) =x( n_), since dz/dn = 0 is equivalent to dx/dn = 0 
because of [FOCI. In this case a continuum of individuals who have 
different abilities choose the same bundle (x(c), z(n)). Then we observe 
‘bunching of individuals’. As will be shown below, the tax schedule has a 
kink at z(n). In this case the government is not able to discriminate the 
individuals perfectly. Compared with a tax, which is based on ability n and 
which allows a perfect discrimination of all individuals, the optimal income 

tax leads to a welfare loss. 

4. On the relevance of the second-order approach: An example 

The necessary conditions (Pl*)-(P3*) cannot be dealt with easily. Thus it 
is not surprising that one cannot find explicit solutions of the first-order 
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model P* in the literature. Some authors try to obtain qualitative properties 
of an optimal income tax [e.g. Mirrlees (1971), Sadka (1976), Seade (1977, 
1982)]. On the other hand, there are some articles that are concerned with 
numerical solutions or simulations of the model for special cases of the 
welfare function, the utility function U, and the density function f [e.g. 
Mirrlees (1971), Tuomala (1984)]. Nevertheless there is one example of an 
explicit solution to the optimal taxation problem, namely the paper of 
Lollivier and Rochet (1983).6 They do not use Mirrlees’ model, but propose 
a different method of solution. Moreover, they make the rather special 
assumption that ability n is uniformly distributed. 

In what follows a concrete example will be presented which demonstrates 
that the first-order approach is not always sufficient to give a correct 
solution to the economic problem P. We assume that all individuals possess 
the quasilinear utility function 

n*(x, Y) = u(x) -Y, 

where v(x) is a strictly concave, twice differentiable, positive function. u*(x,y) 
is additively separable in consumption x and labour y. This property means 
that the substitution between consumption and labour does not depend on 
the amount of labour the individual provides. It implies that there is no 
income effect on consumption. 

At first Problem P* will be solved for arbitrary density functions f.’ We 
need three more definitions: 

F(n): = i f(m) dm, 
n 

G(n):=jfodm 
em ’ 

and 

P(n) = nf(n) + F(n) - G(n)lG($, 

where F is the cumulative distribution 
abbreviations. Now the solution to P* is 

x(n) = LJ- ‘(f(n)lP(n))Y 

function of f; G and /I are useful 
given [as long as p(n) > 0] by 

6A similar (principal-agent) problem is dealt with in Guesnerie and Laffont (1984). 
‘Weymark investigates the problem of optimal income taxation for this class of utility 

functions in a finite economy [Weymark (1986a, 1986b, 1987)]. 
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u(n)=; 

44 =44-o)) - u(4), 

~(4 = n(WWln) - G(4), 

and 

~=GI 

where 

K=j. 
1 

{CWW - 1 + W4lWmN -xWfW> dm. 

It is obvious that these functions can be determined uniquely and explicitly 
in terms of f and u. In appendix A it is proved that they satisfy the 
differential equations (2) and (3), the boundary condition (4), and the 
necessary conditions (Pl*)-(P3*). Thus we have an explicit solution of 
Mirrlees’ income tax problem, formulated as Problem P*. 

1 .oo 1.25 1.50 1 75 2 00 

ability n 

Fig. 1 

Using this result we are in a position to solve P* for arbitrary density 
functions J We choose the interval [rr, ri] =[l, 21 and a particular density 
function f* which is depicted in fig. 1. f* possesses a minimum at n= 1.25. 
Now fig. 2 illustrates the solution of P* for an arbitrary u* and f* 
qualitatively.* The diagram shows the relationship between gross income z 
and net income [consumption] x. To be more precise, all optimal combi- 

‘The solution of this example is derived in Appendix B. 
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i z 

Fig. 2 

nations (x(n), z(n)) for n E [n_, fi] are delineated. The figure demonstrates that 
there are levels of gross income z which are linked with three different levels 
of net income. Evidently there is something wrong with the optimal tax 
system: the second-order conditions are violated. Gross income z(n) [and net 
income x(n) as well] is not always a (weakly) increasing function of n. In the 
interval [n,, nJ gross and net incomes decrease, i.e. condition (SOC) is not 
fulfilled. In other words, we did not get a solution to Problem P**. 

The optimal income tax depicted in fig. 2 cannot be realized since the 
condition of implementability (SSC) is violated. Choose for instance the gross 
income i which is earned by three different types of individuals, namely those 
having ability A, <A<&. It is obvious that an individual possessing ability 
A, is better off if he or she receives x(A) units of the consumption good: 

i.e. (x(A,),z(A,)) is not a global maximum, but merely a local optimum for an 
AZ individual. Furthermore, an A, individual can hide his or her true ability 
and can work with the productivity At A,. In that case the individual would 
be better off. This behaviour can only be avoided if the government is able to 
specify a budget set which depends on ability n. Since the government cannot 
observe true ability, this procedure is not possible. The government has to 
specify a budget set (an income tax) which is common to all individuals. 
Therefore the optimal tax system derived in this example cannot be 
implemented. 

Thus the example demonstrates that the first-order approach is not the 
appropriate procedure to formulate Mirrlees’ model. The second-order 
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I 
1 c 
z z 

Fig. 3 

conditions are relevant. Now it is interesting to compute a solution of P** 
for the example above. Fig. 3 demonstrates this solution graphically.g Now 
gross income z(n) and net income x(n) are (weakly) increasing functions of 
ability n. There is one subinterval [n,n”] where both functions are constant. 
It corresponds to the kink in the net-income schedule. The optimal tax is 
implementable. 

In this case we obtain bunching of individuals. There are individuals of 
different types who all choose the same pair (X,2). We have a kink in the net- 
income schedule at Z. Bunching occurs only within the framework of model 
P**. The condition dz(n)/dnZO must be binding. Then the solution implied 
by model P* is not implementable. 

5. Properties of the optimal income tax 

The example demonstrates that the possibility of bunching must be taken 
into account when the optimal income tax is to be investigated, i.e. one must 
not examine the necessary conditions (P1*)4P3*), but one has to look at the 
conditions (Pl*)-(P7**). 

In what follows we reexamine the properties of the optimal income within 
this framework. 

First we take stock of the literature. Here we find the following results: 

(Rl) The marginal tax rate is non-negative [Mirrlees (1971)]. 

‘Compare this figure with fig. 1 in Rogerson (1985) who investigates the first-order approach 
in a different context. This figure is in general not identical to the lower part of the curve 
depicted in fig. 2. 
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(R2) The marginal tax rate is less than 100 percent [Mirrlees (1971)]. 

(R3) The marginal tax rate of the most able individual is zero [Seade 
(1977)]. 

(R4) If there is no bunching at the lowest income, the marginal tax rate of 
the least able individual is zero [Seade (1977)]. 

(R5) For every income z such that z(c) <z c(E) the marginal tax rate is 
strictly positive [Seade (1982)]. 

All these properties are proven in a first-order model under essentially the 
same assumptions that are made in this paper. Of course it is necessary to 
scrutinize these results within the model P**. We obtain: 

Theorem. (RI)-(R.5) hold in model P** as well. 

At first sight this theorem seems to be natural. Nevertheless it must be 
stressed that it is not easy to prove it in the extended framework, as can be 
seen from the proof in appendix C. Particularly the proof of (R5) is difficult. 
On the other hand, it should be emphasized again that the derivation of 
these properties in the second-order model is necessary since only in that 
case is bunching taken into account correctly. 

Furthermore, some new properties of the optimal income tax can be 
derived. 

(R6) If bunching prevails at the lowest income, the marginal rate of tax is 
strictly positive at the end of the bunching interval. 

Seade (1977, 1982) provides the following interpretation of a positive 
marginal rate of tax. Its main task is to redistribute income. A positive rate 
for any level of gross income increases the tax liability of all higher incomes 
and decreases the liability of all lower incomes. This fact explains why the 
marginal rate of tax is zero for the lowest and the highest incomes. In the 
first case there is no individual who benefits from a redistribution, and in the 
second case there are no individuals having higher incomes who would 
contribute to a potential redistribution. 

If bunching occurs we know that the optimal tax schedule derived in 
model P* cannot be implemented. We have to accept the corresponding 
welfare loss in order to guarantee the implementability of the tax schedule. 
Thus it is not surprising that in this case the redistribution of income is not 
optimal either: the marginal rate of tax is positive for the lowest gross 
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income; we are able to back up Seade’s interpretation. Finally, we are in the 
position to state two results about bunching. 

(R7) If the marginal (dis)utility of labour is zero whenever an individual does 
not work (u,(x, 0) =0 for all x > 0) and if the lowest income is zero 
(Z(Q) =O), then no bunching can occur for the lowest income Z(G). 

This case is discussed by Seade (1977). He needs the additional assumption 
that the marginal rate of tax for z(c) =0 is less than 100 percent and he 
essentially argues by means of a diagram. Since the disutility of labour is 
zero if an individual does not work, the disutility will only slightly increase if 
the individual provides a small amount of labour. Therefore the government 
has no problems in designing a tax schedule which acts as an incentive to 
work for those individuals. Thus no bunching arises. At the top of the 
income scale bunching can be excluded. 

(R8) There is no bunching at the highest income z(E). 

The reason for this property is the following. We know that the marginal 
rate of tax for the most able individual must be zero (R3). Whenever 
bunching occurs the marginal rate of tax is a decreasing function of the 
ability n for all those individuals who choose this gross income. Thus the tax 
rate of an individual who has almost the highest ability must be negative if 
we have bunching at z(E). This is excluded by (R3) and (R5). 

6. Conclusion 

The analysis of this paper draws attention to a problem in developing an 
optimal nonlinear income tax. The crucial point is the way in which the 
individual’s reaction to the imposition of the tax is taken into account. It 
turns out that substituting the first-order conditions from utility maximiza- 
tion does not suffice to imply the implementability of the tax system. Also 
second-order conditions have to be taken into consideration. This leads to an 
extension of Mirrlees’ model and a somewhat more complicated system of 
necessary conditions for an optimal tax. It is necessary to investigate the 
properties of an optimal nonlinear tax in the framework of the extended 
model. 

The main properties of an optimal tax schedule which have been derived 
in Mirrlees’ model can be proved in this extended model as well. Further- 
more, some new results are presented in this paper. Particularly the problem 
of bunching can be investigated rigorously in this framework. Perhaps it will 
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be possible to describe the optimal nonlinear income tax even more precisely 
in the future. 

Appendix A: Solution of Problem P* for quasi-linear utility functions 

Problem P* has the following 

B(n)‘03 

x(n) = u’- ‘(f(4lLO))> 

u(n)=; K+jv(x(m))dm , 
n > 

solution for u(x, y)= u(x) -y [as long as 

and 

144 = n(G(fi)F(n) - G(n)), 

A = G(n), 

where 

K=; iCmf(m)- 1 +F(m)]u(x(m))-x(m)f(m)}dm, 
n 

F(n) = i f(m) dm, 
n 

G(n) =j mdm, 
!! m 

and 

P(n)=nf(n)+F(n)-G(n)/G(ti). 

First we define some important derivatives which will be needed below. 
We have U(x, z, n) = v(x) -z/n and therefore 

J.PE.- c 
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Now we will prove all conditions which must be satisfied by a solution. 

du(n) 
(a) dn 

- = U,(x(n), z(n), n)‘. 

We get by insertion: 

du(n) d 1 -=_ 
dn 

dn ; K +j o(x(m))dm 
[( E 

> = 
n2 

_ ew 1 1 
n 

-[-(K+j~(x(m))dm 
n n I! )I 

4-W) 44 =------_ 
n n 

On the other hand: 

u = z = 44x(n)) -u(n)) 4x(n)) u(n) =--- 
” 

n2 n2 n n ’ 

04 g = (44 - xW)f(n). 

This equation holds by the definition of R. 

(4 R(n) = R(n) =O. 

We have 

R(n) = j (z(d) -x(n’))f(n’) dn’ 
n 

(3) 

(4) 

and get immediately R( n_) = 0. 
Now consider 
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R@)=;@(n)-x(n))f(n)dn 
n 

=i In(u(x(n))-u(n))-x(n))f(n)dn 
!! 

K + j: o(x(m)) dm f(n) -x(n)f(n) dn 
n 1 

Now by definition of K we get 

nv(x(n)).f(n)- ju(x(m))dm.f(n)-x(n)f(n) 
n 

- [W(n) - 1+ Wax) - x(n)f(n)l dn 

=i{-~u(x(m))dm-/(n)+o(x(n))-F(n)r;(x(n)))dn 
n 

since some terms disappear. 
Now the order of integration can be reversed: 

[[~l;(xim)l~d m]/(n)dn=[o(x(n)).[i/(m)dm]dn 

=jv(x(n))[l -F(n)]dn. 
I! 

Thus we obtain R(n) = 0. 

(d) -p(n). U;s,+A(l -s(n))f(n)=O. w*) 

We get by insertion: 
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-/J(n). fJx. S” + 41 -mm 

= -n(G(Z)F(n)-G(n)).o’(x(n)). - ( n21&))) 

Now observe that 

nC44) = nv’(u’- ‘(f(n)lB(n))) 

_nfo_ nf (4 
P(n) nf(n) + F(n) - G(n)lG(fi)’ 

Therefore we get 

(*)=i(G(ri).F(n)-G(n)) 

+ G(n) d(n) - bf(n) + 0) - W/W)1 . f(n) =o 

nf (4 

(4 p’(n)+p(n)*++ 
x 

We use the solution given above and obtain: 

= G(ii).F(n)-G(n)+n G(S)f(n)- 9 

w*) 

(34 
u’(u’ ‘(f(n)/B(nN 
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= [G(n)F(n) - G(n) + nG(ii)f(n) -f(n)] + I-(n) -E’n”T’. B(n) f(n) 

=[G(ti)F(n)-G(n)+nG(fi)f(n)-f(n)] 

+ IX4 - G(fi) . (M(n) + F(n) - G(WW))l 

=o. 

(0 p(?l)=,u(ii)=O. 

Immediately by the definition 

F(c)=G(n)=O and 

of F and G: 

F(ii)= 1. 

(p3*) 

Appendix B: Solution of the example 

We choose the utility function u(x, y) =v(x) -y, where D(X) is any strictly 
concave, twice differentiable, positive function, and the density function f* 
which is depicted in fig. 1. f* is defined on [n_,ti] = [1,2] by 

f* possesses a minimum at n= 1.25. The form of f* allows us to derive the 
functions F and G as simple algebraic expressions: 

F(n) = 
5+n-2n2-3f for ljnslt, 

-l$n+$?+$ for l$<ns2, 

and 

G(n) = 
5+lnn-4n+4 for lsnsl), 

-l+lnn+l+n-1.179 for l$<ns2. 

Therefore it is not difficult to compute B(n) and to derive x(n), z(n) and u(n) 
after choosing any function u (cf. Appendix A). Figs. Bl and B2 illustrate the 
form of x(n) and z(n) diagrammatically. It turns out that x(n) and z(n) 
strictly decrease on a subinterval. This fact can be easily proved numerically 
as well: evaluate dx(n)/dn at A= 1.245. Then one gets: 
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X 

I I 1 I C 

“0 “1 “2 “3 n 

Fig. Bl 

I C 

“0 “1 “2 “3 n 

Fig. B2 

dx(ii) 1 

~ = u”(u’P1(f(A)/fi(A))) dn 
f’(WV4 -f(WV) <0, 

P2(4 

In order to derive fig. 2 we choose ni, i=O, 1,2,3, as indicated in fig. Bl. 
Generally we have 

nu(n)=K+ju(x(m))dm 
!! 

=niu(ni) + j $x(m)) dm for n 2 ni (cf. Appendix A), 
“i 
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and for n = nj > ni: 

nju(nj) = niu(ni) + y ~(x(m)) dm. 
n, 

On the other hand: 

nu(n)=nu(x(n))-z(n). 

Using this equation for n= nj and n=ni we can transform (Bl) into 

nju(x(nj)) -z(nj) = niu(x(ni)) -z(ni) + 7 u(x(m)) dm. 
ni 

(Bl) 

U32) 

Next we observe that 

jiU(Xj)dm=njU(Xj)-niU(Xj) 
"8 

and replace nju(xj) in (B2) accordingly. Then we obtain by simple rearrange- 
ments for nj > ni: 

z(nj)=z(nJ + ni[u(x(nj)) - u(x(nJ)] +y [u(x(nj)) - u(x(m))] dm. 
“1 

Because of the monotonicity of u we get 

z(nJ < zh) and zh) > z(nJ 

and, moreover, 

ZW <zhJ and z(nd>zh) 
since 

x(nJ =x(n,) and x(nJ =x(q). 

These inequalities imply the ordering 

and the diagrams depicted in figs. B2 and B3 which form the basis of fig. 2. 
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xb,)=xh3)- 

xbo)=xb*)- /Y 
I I I 

z(nz)z(nrJ) z(n,) es) 
Fig. B3 

Appendix C 

First some useful relationships are stated or derived. The first-order 
conditions (Pl*) and (P2*) are equivalent to (Cl) and (C2), respectively: 

p’U,+pU,,+(U,-A)f=O. (C2) 

(Cl) follows immediately by observing that Uxs,= -(U,,s+ U,,) and using 
(P2*). 

Solving the differential equations (Cl) and (C2) we get directly: 

p(n)=j: 
” 

(C3) 

(C4) 

Here the initial conditions (P3*) are taken into account. 
Moreover, from (C4) we obtain the inequality 

A>0 (C5) 

(observe that the integrand must change its sign at least once; U, is positive 
and cannot be constant). 
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Finally, the sign of the marginal tax rate t’(n) is mostly equivalent to the 
sign of the adjoint variable p 

sign (t’(n)) = - sign (p(n)) if there is no bunching at z(n). (C6) 

(C6) is implied the (Pl*), agent monotonicity (AM), (C5), and the fact that 
t’(n) = (1 -s). 

Now we turn to the proof of (Rl)-(R8). (Rl) and (R5) will be considered 
at the end of the appendix because the proof is long. 

(R2) has already been proved by Mirrlees (1971). 
(R3) is implied by (Pl*). We have 

(1 _s(fi)) = P(4. UXS” + df(n) _ 4’(4 
G- (4 a- (3 

since p(n)=0 by (P3*). Now J. is positive by (C5) and 4’ is nonpositive by 
(P4**) and (P7**). Thus (1 -s(n)) SO. The rest follows from (R5). 

(R4) is due to Seade (1977). 
Next we look at (R6). For n=n_, (Pl*), (P3*), and (P7**) imply 

If bunching obtains, (1 -s(n)) increases with n: 

= -s;x’(n)-s,z’(n)-s,= -_s,>O 

because of x’(n) =z’(n) =0 and (AM). This proves (R6). 
We now consider (R7). Suppose that there is bunching in the interval 

[n_,ii] and that z(n)=0 for nE[n,fi]. Because of the form of the utility 
function we have U,(n) = u,(x(n), 0) =0 and therefore U,,(n) =0 for all 
ne[n_,r?]. (Cl) implies in particular #(n)=Af(n)>O for all nE[n_,ii]. On the 
other hand, we have +(n_) =&ti)=O and 4(n)>O for nE(n_, fi). This is a 
contradiction. 

(R8) follows from (R3). The marginal tax rate is zero. If we have bunching 
at z(n) the marginal rate must be negative for some n<fi since (1 -s(n)) 
increases [cf. the proof of (R6)]. This fact contradicts (Rl), which will be 
proved now. 

The proof of (Rl) is rather lengthy. If no bunching prevails, the result is 
proved by Seade (1982). Therefore we have to discuss the implications of 
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bunching. Suppose that bunching obtains in a (maximal) interval [n,, n”]. If 
n=n, property (R6), which was proved above, demonstrates that the 
marginal tax rate is positive at n =fi. Thus we assume c-=z~. If the marginal 
tax rate is non-negative for n=n_, it is positive as well for n= ii since the rate 
increases in [n,li] because of agent monotonicity (AM). So we must consider 
the situation where t’(n) = (1 -s(n)) is less than zero. We have to distinguish 
between two cases. In case A the tax rate is still nonpositive at n=n”, in case 
B it is strictly positive for n = n”. 

Case A. Here we can apply Seade’s method of proof. Since (1 --s(e)) 50, 
~(6) cannot be negative [cf. (Pl*)]. There must exist n,sn_ and n*lfi such 
that 

,~(n*)=p(n*)=O and p(n)>0 for n~(n,,n*) 

We obtain I’ 20 and $(n*) SO. 
Condition (C2) implies U,(n,) 5 ,J and U,(n*) 2 1. Since (1 - s(n,)) = 0 we 

get 

by the definition of s. 
Application of (Cl) implies, because of @(n*) 50, 

i _I - u,(n*). 

All this yields (remember that UX=u, and U,=u,/n): 

ux(n*) 5 u,(n*), (C7) 

- u,(n*) < -IA, 3 5 - u,(n*), CC81 

and of course we have 

O*) < u(n*) (C9) 

(since du/dn > 0). 
The implications of (C7), (C8), and (C9) are ruled out by a theorem proved 

in Dixit and Seade (1979) because u has to be twice continuously differenti- 
able, monotone, and strictly concave, and because consumption and leisure 
are normal and noninferior, respectively [cf. Seade (1982)]. 
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Case B. Here we have p(E) ~0. We choose n, as before and get U,(n,)= 
-U,(n,). Define n* by the condition that n*E[n,fi] and (1 -s(n*))=O. The 
sign of p(n*) is unknown. We consider three different cases: p(n*) <O, 
p(n*) = 0, and p(n*) > 0. 

(1) Suppose p(n*) < 0. Then there exists fi E [n,, n*] such that (1 -s(A)) ~0, 
I =O, and p’(G) SO. Condition (C2) implies U,(A) ZA and therefore we 
have U,(h) 2 U,(n,). (1 -s(i)) <O yields i,z U,(h) < - U,(A). Thus we can 
argue as Seade again. 

(2) If p(n*) = 0 we can use the same arguments. (Choose j2: = n*.) 

(3) Suppose p(n*) > 0. If U,(n*) = - U,(n*) 2 U,(n,) = - U,(n,). We use 
the same kind of proof as above. Otherwise we must have 

U,(n*) = - U,(n*) < U,(n,) = - U,(n,) 5 A. 

Now we consider in the bunching interval 

$(p. U,)=$. uz+p.$+Iz+p. u,, 

(x’(n)=z’(n)=O!). Therefore we know by (Cl) that 

&L)= -(U,+A)f+@. 

Integrating both identities we get 

A d 
S -(N,)=M)U,(+An*)U,(n*)=:(*) 
n* dn 

= -i(Uz+l)((n)dn+b(ii)-$(n*)=:(**). 

Since U, < 0, p(i) < 0, and p(n*) > 0 expression (*) is positive. On the other 
hand, U,(n*) +A is positive. Furthermore, it increases on [n*, ii] since 

$uz= 
-__u “o-u 

YY n2 ’ 

n2 

is positive. Thus (**) is negative ($(fi) =0 and &n*) >O) and we have a 
contradiction. 
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Proof of (R5). Assume that the marginal rate of tax is zero for z(n*), 
z(c) <z(n*) <z(n). This implies p(n*) = p’(n*) =O. By (C2) we obtain U,(n*) = 
2. It follows from (Rl) that there can be no bunching in a small interval 
(fi, n*) since otherwise the marginal tax rate would be negative, therefore 
- U,(n*) = il by (Cl). 

We choose n, e(A,n*) such that $(n,)>O. Since U,, is positive, eq. (Cl) 
implies that U,(n,) + L > 0, i.e. - U,(n,) < 2. This inequality implies that 
1+(1/U,) <O in a small neighbourhood of n. (p(n) is increasing!), i.e. the 
integrand in (C3) is negative, since @(n)=O. The same must be true for the 
integrand in (C4). Therefore we have 

and hence U,(n,)<l. 
Thus we can apply Seade’s proof again. The case considered cannot occur 

if consumption and leisure are noninferior. Q.E.D. 
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