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SUMMARY

Side effects (SEs) are the unintended consequence
of therapeutic treatments, but they can also be
seen as valuable readouts of drug effects, resulting
from the perturbation of biological systems by chem-
ical compounds. Unfortunately, biology and chemis-
try are often considered separately, leading to
incomplete models unable to provide a unified view
of SEs. Here, we investigate the molecular bases of
over 1,600 SEs by navigating both chemical and
biological spaces. We identified characteristic
molecular traits for 1,162 SEs, 38% of which can be
explained using solely biological arguments, and
only 6% are exclusively associated with the chemis-
try of the compounds, implying that the drug action is
somewhat unspecific. Overall, we provide mecha-
nistic insights for most SEs and emphasize the
need to blend biology and chemistry to surpass intri-
cate phenomena not captured in the molecular
biology view.

INTRODUCTION

Side effects (SEs) are additional, usually undesirable, conse-

quences of therapeutic treatments. Safety issues may arise at

any developmental stage of a drug and even after its marketing

and testing on the population at large (Giacomini et al., 2007).

Apart from fatal postmarketing consequences, which are rela-

tively rare, unwanted SEs can often lead to harmful or unpleasant

reactions. The current picture in Western countries is that

adverse drug reactions rank closely behind cancer and heart dis-

eases as the major cause of mortality and morbidity (Wu et al.,

2010).

Although unintended, drug SEs constitute a valuable readout

of drug effects in humans, and accordingly, substantial efforts

have been recently invested to catalog the drug-adverse events

scattered in clinical reports (Tatonetti et al., 2012) and drug pack-

age inserts (Kuhn et al., 2010). When appropriately delineated in

databases, SEs may be used as phenotypic profiles that can be

linked with precise molecular data. However, this is not straight-

forward because SEs are the result of complex relationships

emerging from the exposure of a biological system to a chemical
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entity and its degradation by-products, in the same way that are

the therapeutic treatments. Unfortunately, biological and chem-

ical entities are often considered separately, which leads to

incomplete models unable to provide a unified view of SEs,

and concerted strategies able to merge and quantify their indi-

vidual contributions to the global behavior of the system are

highly desirable.

The molecular biology view of drug action is that medicines

exert their desired and undesired effects by interacting with

molecular targets. This rationale inspired a systematic analysis

to identify novel drug-target interactions using SE profiles (Cam-

pillos et al., 2008) and has been further reformulated to capture

more complex biological entities, such as pathways (Wallach

et al., 2010) or cellular processes (Lee et al., 2011). From this

perspective, a SE could be seen as a consequence of the mod-

ulation of a known therapeutic target, for instance, because of its

presence in different body tissues. This is the case of morphine,

which achieves analgesic effect by modulating g-opioid recep-

tors in the brain and causes constipation when targeting the

same receptors in the gut (Holzer, 2009). Alternatively, SEs can

be explained by the binding of the drug molecule to nonintended

proteins (i.e., off-targets). For example, Rescriptor, which is an

HIV-1 reverse-transcriptase inhibitor, causes severe rashes by

also interacting with the histamine H4 receptor (Keiser et al.,

2009). However, unfortunately, only a few relationships between

targets and SEs are well documented (Vedani et al., 2012), and

despite remarkable recent progress (Lounkine et al., 2012), the

mechanistic details for most undesired events remain unknown

(Bauer-Mehren et al., 2012).

The traditional pharmacological view of drug action and dis-

covery is somewhat different, as it was based on documenting

the effects of drugs on animal models, rather than exploring

and characterizing all biological mechanisms. Currently, there

is a growing awareness that bioactivity data, and informa-

tion on the behavior of a compound in a biological context,

is mostly encoded within its chemical structure. This assump-

tion has permitted to relate targets showing similar pharmaco-

logical profiles (Garcia-Serna et al., 2010; Keiser et al., 2007;

Mestres et al., 2006) into clusters of seemingly disparate pro-

teins, providing new insights into the function of the targets

(Hillenmeyer et al., 2010).

It is known that some complex or unspecific biological phe-

nomena can be triggered by very well-defined chemical features,

such as the toxicity initiated by electrophilic compounds, formed

either as a drug by-product (e.g., a quinoneimine from paracet-

amol), or as a result of enhanced cellular production of reactive
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Figure 1. A Top-Down Approach into Drug Side Effects

Chemical and biological details of drugs are deployed in order to link detailed

molecular features to phenotypic events.
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oxygen or nitrogen species (Williams and Park, 2003). Recently,

such structural alerts were mined in a collection of SEs (Bender

et al., 2007) and used in a follow-up study to build a chemical

map of adverse events that showed a systemic organization

(Scheiber et al., 2009), similar to the pharmacological organiza-

tion that targets show when described from the perspective of

their ligands. However, the general applicability of this strategy

is uncertain, and there are no estimates as to the number, and

types, of chemical moieties that can trigger SEs independently

of their protein targets. Moreover, it is currently unfeasible to

decode structure-activity relationships (SARs) at the organism

level for every drug molecule, because the data are scarce and

they do not explore a significant region of the chemical space.

Some SEs can be understood by analyzing the biology of the

modulated targets, whereas others are better explained by

considering only the chemical properties of the drug compound,

suggesting that no definitive methodology exists to approach

drug SEs departing solely from molecular concepts. Indeed,

the best event predictors are trained mostly from observational

clinical reports that relate drug intakes to SEs (Cami et al.,

2011; Tatonetti et al., 2012), with little attention paid to either

biological or chemical details. Other attempts, alternatively,

included all information available on drugs (Gottlieb et al.,

2011) at the expense of interpretability. Yet, knowledge about

the specific biological or chemical features able to trigger an

adverse reaction is highly desirable as these molecular details

can aid the drug discovery process by informing decisions on

a binding assay choice or a moiety to avoid, for example, and,

at the same time, by building a mechanistic explanation.

Universal solutions are rare in biology, and the faculty to

explain a phenotypic event with a few molecular concepts is

often a matter of choosing the right focus. Accordingly, we

analyze here a comprehensive collection of drug SEs, and for

each of them, we assess whether a biological or a chemical

perspective, or a combination of both, is the most adequate to

reveal its molecular bases. That is, we rationally blend two dispa-

rate perspectives to quantify their contribution to SEs, which

should ultimately lead to a unified view of drug effects in humans.

RESULTS AND DISCUSSION

Our analysis consisted in a top-down approach, where drugs

were classified at the phenotypic level, and associations with

molecular characteristics were agnostically proposed therefrom.

We gathered and organized molecular details for each com-

pound in a way that represents the current biological and

chemical mindsets (Figure 1).

The first layer of biological details included the intended

targets of a drug molecule. Then we complemented therapeutic

targets with proteins linked to the drug molecule in a chemical-

protein interactome, in order to include possible off-target

effects. Additionally, we considered the possibility that the

modulation of distinct proteins participating in the same cellular

process, or devoted to a particular function, might have similar

phenotypic implications (Lee et al., 2011; Wallach et al., 2010).

With these levels of biological organization, we expect to gain

power in detecting simple biological descriptions that are related

to SEs, although not necessarily through the interaction with the

same proteins.
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Regarding the chemical perspective, we used in the first place

small 2D fragments, which have proven useful to build interpret-

able SARs (Pauwels et al., 2011) and have the virtue of being

recognizable by the organic and the medicinal chemist, despite

not including properties like rigidity or lipophilicity (Oprea and

Gottfries, 2001). Similarly, we built a network of molecular scaf-

folds (Varin et al., 2011) following Murcko’s rules (Bemis and

Murcko, 1996). These rules imply a recursive pruning of mole-

cules and have been proposed to guide the navigation of chem-

ical libraries in amanner that is biologically relevant (Wetzel et al.,

2009). Finally, we also explored an organic chemistry vocabulary

that organizes the structural features of compounds (de Matos

et al., 2010).

Summary of the Methodology
Aschemaof themethodological strategy is presented in Figure 2.

To identify overrepresented biological or chemical features that

might be indicative of a given effect, we analyzed a collection

of 1,626 clinical events extracted from 992 drug package inserts

(Kuhn et al., 2010). We then classified the drugs into different

SEs, where a single drug might occur in multiple SEs depending

on the number of reported events, and we tested the overrepre-

sentation of molecular features among drugs using appropriate

statistical approaches (see the Experimental Procedures). The

outcome of the enrichment analysis is, for each SE, a collection

of different overrepresented traits, which could potentially play a

role in the development of the SE. Our top-down approach gen-

erates simple associations at different depths of biological and

chemical details (from therapeutic targets to pathways, and

from small fragments to large scaffolds), thus favoring individual,

well-defined, and testable findings (Figure 1).

Finally, we used the enriched molecular features to propose

simple drug classifiers, which now allow for features to be

combined, and evaluated their performance by means of the

F1-score (Equation 1), a common measure to balance precision

and recall. Here, precision is calculated as the number of drugs

correctly identified as causing a given SE (i.e., true positives)

over the total number of drugs predicted to cause it (i.e., true

positives + false positives), and the recall is given as fraction of

true positives over the total number of drugs causing the SE
594–603, April 18, 2013 ª2013 Elsevier Ltd All rights reserved 595



Figure 2. Scheme of the Methodology

(A) Drugs that cause each of the SEs are collected, and the biological and chemical profiles of these drugs are extracted from several resources.

(B) An enrichment analysis is performed for each SE feature pair, based on contingency tables counted on the number of drugs that cause the event and the

number of drugs related to the feature.

(C) After a multiple testing correction, an overrepresentation profile is proposed for the different types of features.

(D) A cross-validated classification exercise helps to address the comprehensiveness of the overrepresentation profile and the possible advantages of combining

observations of different types.
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(i.e., true positives + false negatives). Wewould like to stress that

these classifiers should not be considered as the endpoint of our

analysis. As explained above, for an exhaustive collection of

SEs, we perform a search for individual molecular traits that

appear strongly associated to the events. In this context, an

F1-score measures if such molecular details are specific to the

drugs that cause the event (precision) and account for most of

the drugs (recall). Therefore, high F1-scores correspond to those

SEs for which our findings are sufficient to identify many of the

related drugs, with strong certainty that safe compounds (i.e.,

those not causing the SE) do not share the proposed molecular

profiles. On the contrary, low F1-scores correspond to cases for

which our findings only belong to a fraction of the SE-causing

drugs, possibly without a specific and complete description

because safe drugs exist with the traits associated with the

event. Note that scarce drug safety records, and the fact that

drug target profiles are not complete (Mestres et al., 2008),

contribute to low F1-scores. Thus, overall, we argue that classi-

fication performance can be seen as a measure of comprehen-

siveness of our molecular discoveries, i.e., the proportion of

drugs to which molecular models are applicable and the cer-

tainty that drugs fulfilling the molecular requirement will cause

the given SEs. Accordingly, F1 is used to prioritize our SEmodels

in this global analysis but should not be taken as an assessment

of the true association between individual molecular traits and

SEs, which we controlled in the statistical analysis. For discus-
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sion in this paper, we considered that combinations of biological

and/or chemical features with F1-scores > 0.5 provide descrip-

tions that are fairly comprehensive.

Flagging Biological and Chemical Details
Figures 3 and 4A illustrate the features most commonly associ-

ated to SEs and three representative portions of the molecular

models built around each SE, respectively. The complete results

are provided in Tables S1 and S2 (available online). Concretely,

for each SE, we indicate which biological and/or chemical fea-

tures are overrepresented and assess their use to build classi-

fiers with the F1-score. We also propose an optimal classifier

that may benefit from the integration of different feature types,

specifying its precision and recall.

We could find overrepresented biological or chemical features

in 1,162 (71%) SEs; all statistics hereafter refer to this subset of

events. Out of these 1,162 SEs, we obtained a model with an

F1-score > 0.5 for 164 (14%) by using enriched features as

parameters. These are cases for which we have identified com-

binations of biological and/or chemical traits whose occurrence

is almost invariably associated to a SE (average precision of 0.74

within the [0.49–1] range) and that are present in most drugs

known to cause this effect (average recall of 0.59 within the

[0.36–1] range). On the other hand, in 432 (37%) of the SEs,

our features were not sufficient to alert the event for any of the

drugs in a cross-validation. In between, almost half of the SEs
Ltd All rights reserved



Figure 3. Features Most Commonly Associated to SEs

Each row represents a feature type, and features are ranked by decreasing number of associated SEs; only the top ten features are shown. For each feature, the

size of the bubble is proportional to the number of associated SEs, and the opacity corresponds to the frequency of the feature among drugs in the data set. Some

of the bubbles refer to more than one feature; in such cases, the properties of the bubble are those of the top-ranking feature, and the remaining features are

specified within parentheses. A detailed description of all of the traits associated to SEs is provided in Table S2.
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had an overrepresentation profile that was moderately compre-

hensive (0 < F1 % 0.5), with an average precision and recall of

0.62 and 0.21, respectively.

Abundant, yet Insufficient, Biological Knowledge

We associated biological features to a majority (94%) of SEs.

As expected, for most SEs we captured entities of different

types (biological processes, pathways, proteins, etc.) because

all these types refer to the same initial drug-protein interactome

(Figure 4C). To assess these findings, we first checked whether

our systematic approach was able to flag proteins that are

commonly alerted by toxicologists, related to endocrine and

metabolic disruption, cardiogenicity, and cardiotoxicity (Vedani

et al., 2012). Thirteen out of the 16 proteins associated to

these adverse events were present in our drug-protein interac-

tion data. We found 10 of them overrepresented in at least

one SE, and remarkably, 9 were enriched in a number of

SEs above the median (Table S4). In addition, we conducted a

bibliometric study to assess how many of the known associa-

tions we are able to recapitulate as well as how many have

not been reported before. Our analyses suggest that the

majority of the relationships identified may be novel, with the

estimation that our biological explanation had already been
Chemistry & Biology 20,
reported for only 16% of the SEs (Table S3; Supplemental

Experimental Procedures).

Interestingly, in 674 (58%) of the cases, the adverse and the

therapeutic mechanisms correlated. For example, all of the 10

drugs intended to target the angiotensin-converting enzyme

(ACE) cause pulmonary eosinophilia (Figure 4B), which agrees

well with what is known about ACE inhibitors, their mechanism

of action, and possible off-target effects (Trifilieff et al., 1993;

Vasquez-Pinto et al., 2010).

A potential pitfall when considering only intended therapeutic

targets is that we can erroneously infer noncausal associations

between these and SEs, when the actual effectors are off-targets

shared by molecules of the same therapeutic class. However,

the real causal relationships should emerge if we include off-

target proteins in the analyses. In doing so, we proposed liable

proteins in 77% of the SEs. On average, six proteins were

overrepresented per SE (Table 1). In principle, these findings

include causal drug-protein interactions and can thus hint

mechanistic insights. For instance, our analyses show that four

out of the seven drugs that cause respiratory paralysis interact

with the KCNQ1 and SCN10A voltage-gated channels, thereby

interfering with the neuromuscular apparatus (Figure 4B), in
594–603, April 18, 2013 ª2013 Elsevier Ltd All rights reserved 597



Figure 4. Overrepresented Features to Explain Drug SEs

(A) This panel shows three representative portions of the results SE-wise (see also Table S1). Filled cells in the main matrix refer to SEs for which we detected

enrichment signals. Cells in the main matrix are color-graded according to the F1-score. Columns on the right refer to the optimal classifiers, built by combining

the spotted molecular views. In addition, a normalized measure of the information gain upon classification is given in gray-scale. The bar plot on the right

represents the number of drugs that were reported to cause each SE. Finally, the bar plot on the top adds up the SEs with overrepresented features. The

proportion of these that led to classifiers and contributed to an optimal model is progressively dark shaded.

(B) Illustrative examples linking adverse events to detailed molecular features.

(C) The underlying biology and chemistry of SEs. Venn diagrams join SE sets for which enrichment signals were found. For simplicity, the ‘‘proteins’’ circle groups

the ‘‘therapeutic targets’’ and the ‘‘protein interactors’’ categories, and ‘‘processes and functions’’ joins ‘‘biological processes’’ and ‘‘molecular functions’’.

See also Figures S1 and S2.
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agreement with some work (Senanayake and Roman, 1992).

The other three drugs, namely, dextrose, magnesium ion, and

pyridostignin, are pharmacologically distant, but they are all

reported to bind the coagulation factor X. How this translates

into respiratory paralysis is more difficult to comment on, as to

the best of our knowledge, mechanistic links between factor X

and respiratory paralysis has not been established.

Beyond rationalizing and quantifying known associations

between drug targets and SEs, our method is able to hypothe-

size relationships. An effective strategy to extract compelling

mechanistic insights among these putative SE-protein associa-

tions is to look for overrepresented proteins that interact with

disease-related genes (see the Supplemental Experimental

Procedures for further details). For example, 35 drugs in our

data set may induce ileus paralytic, which refers to intestinal

pseudo-obstruction due to severe abnormality of gastrointes-

tinal motility. Dopamine receptors (DRs) D2 and D3 are overrep-

resented as targets among these 35 drugs and have not been

previously related to this SE. Also, drugs that target DRD2 and/
598 Chemistry & Biology 20, 594–603, April 18, 2013 ª2013 Elsevier
or DRD3 do not interact with any of the ileus-related gene

products (Davis et al., 2013), meaning that no alternative and

trivial mechanism of action can be proposed. Interestingly,

DRD2 and DRD3 physically interact with filamin A (FLNA); dupli-

cation of FLNA gene has been associated with intestinal pseudo-

obstruction phenotypes (Clayton-Smith et al., 2009). Also, FLNA

is known to play an important and selective role in the localization

of DRD2/3 (Lin et al., 2001). Thus, we hypothesize that blockade

of DRD2 and/or DRD3 may result in aberrant behavior of this

mechanism, possibly acting on the same molecular processes

that are altered upon the disease-related duplication of the

FLNA gene.

Another interesting example regards the pathologic deposi-

tion of calcium salts in tissues, termed calcinosis. We found

that three of the seven drugs that cause calcinosis interact

with matrix metallopeptidase 1 (MMP1). This enzyme shows a

certain specificity to cleave the monocyte chomoattractant pro-

tein 2 (MCP2) (McQuibban et al., 2002), and the integrity of the

MMP1 catalytic domain has been proposed to be required for
Ltd All rights reserved



Table 1. Summary of Results

SEs SE-Features

Distinct

Features F1 > 0.5

Therapeutic targets 674 1,457 79 24

Protein interactors 905 5,466 323 40

Pathways 631 4,281 154 31

Biological processes 727 9,727 835 38

Molecular functions 705 5,766 310 43

Small fragments 564 6,630 452 44

Scaffolds 429 586 74 19

Structural terms 427 694 105 26

Biology 1,904 2.7 3 104 1,701 73

Chemistry 716 7.9 3 103 631 59

‘‘SEs’’ refers to the number of SEs for which enriched features were

found. ‘‘SE-Features’’ is the total number of SE-feature relationships;

‘‘Distinct Features’’ counts the unique features that were overrepre-

sented in at least one SE. Finally, ‘‘F1 > 0.5’’ refers to the number of

comprehensive models.

See also Tables S3 and S4.
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complex formation with its natural inhibitor, tissue inhibitor of

metallopreoteinases-1 (TIMP1) (Vallon et al., 1997). Drugs that

interact with MMP1 can thus interfere with its ability to engage

MCP2 and TIMP1. Interestingly, these two genes were detected

in a recent study to rationalize therapeutic effects in aortic valve

calcification (Shuvy et al., 2011), strongly suggesting that drug

interference with MMP1 could trigger calcinosis.

Whereas some SEs can be rationalized as shown in the pre-

vious examples, others are more related to drug metabolism

issues. In this regard, it is worth noting that cytochromes P450

were recurrently overrepresented, e.g., CYP3A4 was associated

with 214 SEs (Figure 3). This observation is in good agreement

with the recent estimate that targets of drug metabolites may

be involved in up to 40% of the adverse events (Bauer-Mehren

et al., 2012). We decided not to include drug metabolites in our

analysis, because drug by-products are only identified upon

administration in body systems or predicted, most notably, by

means of cytochrome catabolism experiments (Fura, 2006).

Our approach illustrates the tendency to overlook the identity

of metabolites at the drug discovery stage (Fura, 2006). In line

with this, and aware of the lack of completeness in drug-protein

interaction data (Mestres et al., 2008), we propose that our bio-

logical insights may be read as a quantification of the usefulness

of our current knowledge on the molecular biology of medicines

to explain their adverse events.

Remarkably, we could only propose a model with F1 > 0.5 for

73 (6%) SEs, even when we had 2.7 3 104 SE associations with

proteins, pathways, biological processes, and molecular func-

tions (Table 1). This means that, although there is already abun-

dant biological information, it is not yet enough to explain the

complexity of effects observed in clinical trials. Moreover, the

predictive power of proteins was similar to that of pathways, bio-

logical processes, or molecular functions, suggesting that, in the

majority of cases, these annotations alone are not enough to

scale-up to a phenotype. In order to gain predictive power, our

identification of potentially harmful proteins should be integrated

with other types of biological data (i.e., presence of paralogs that
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can compensate for each other’s function, backup circuits,

expression in different tissues) into systems biology models

able to weight their contribution and establish the functional

causes of SEs. For this purpose, our findings, which constitute

individual biological alerts, can be particularly useful as seeds

in the elaboration of complex network biology models (Soler-

López et al., 2011).

Predictive, yet Limited, Chemical Details

We detected chemical traits for 716 (61%) SEs. On average, we

spotted 11.8 small fragments, 1.4 scaffolds, and 1.6 structural

terms for each SE. The several small fragments related to each

SE may be used in SAR models, whereas the more informative

scaffolds and structural terms may be proposed as liable fea-

tures to avoid when designing safer drugs. It should be noted

that molecules in this study correspond to optimized chemo-

types, and thus our findings are enriched with structural alerts

that might not be currently known to have SEs. Interestingly,

19% of the associated small fragments could be found among

disease-related environmental chemicals (Table S4).

Overall, we collected 7.93 103 associations between SEs and

chemical traits, three times less than in the case of biological fea-

tures. Still, we could generate 59 comprehensive classifiers

solely based on chemical details (Table S1). Of these, 27 lacked

a plausible biological model, suggesting that the chemistry of the

compounds alone may be responsible for the SEs. Overall, we

observe that, although the number of chemical features associ-

ated to a SE is scarcer than biological traits, their predictive

power is on average superior. An example is xanthopsia, which

refers to the predominance of yellow in vision. In drugs causing

it, we observed an overrepresentation of the small fragments

depicted in Figure 4B. The biological mechanism underlying

xanthopsia is not yet clear, despite the interest aroused by

the suspicion that this condition influenced Vincent van Gogh’s

‘‘yellow period’’ (Arnold and Loftus, 1991). Nonetheless, the

small fragments we flagged, combined to form e.g., thiazides

or sulfonamides, recalled with full precision 7 out of the 13

drugs that cause this SE. Similarly, by considering only the

cephalosporin and the tetracycline scaffolds, we predicted

nephropathotoxicity with 47% recall and 85% precision. Several

antibiotics are mounted on these two scaffolds long known to be

toxic in the kidney. In fact, the first attempts to elucidate the

mechanism of cephalosporin toxicity were purely chemocentric

(Tune and Fravert, 1980); we recovered this knowledge in an un-

biased systematic fashion.

One can suspect that, if no biological signal is found, then the

drug action is somewhat unspecific. We found that as low as 6%

of the 1,162 SEs can exclusively be associated with chemistry

(Figure 4C), implying that only a small proportion of SEs appear

unrelated to drug targets. However, this may well be an underes-

timate given the abundance of overtargeted cytochromes in

our findings: drug-metabolizing enzymes can certainly produce

reactive by-products, thereby leading to nonspecific alterations.

Chemistry to Complement Biology

For 648 (56%) SEs, we detected both biological and chemical

features. In some cases, the two views seemed complementary.

For instance, uncontrolled movement of the body, termed

buccoglossal syndrome, is caused by six drugs in our data set.

Buccoglossal syndrome is a common event among antipsy-

chotics (Blanchet et al., 2012). Accordingly, we found an
594–603, April 18, 2013 ª2013 Elsevier Ltd All rights reserved 599



Figure 5. Systemic Clustering of Biological and Chemical Details

(A and B) Filled cells correspond to SOCs annotated to SEs with overrepresented features. The clustering of SEs within each SOC is given a significance P-value.

As illustrative examples, we highlight chemical scaffolds related to blood and lymphatic disorders (A) and proteins associated to vascular disorders (B).
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overrepresentation of drugs that interact with the 5-hydroxytript-

amine receptor 5-HT2A and the dopamine receptor DRD2. Also,

we found that a significant proportion of the molecules that

cause this SE contain the privileged piperazine moiety (Fig-

ure 4B). There are 44 molecules that target 5-HT2A and/or

DRD2, and 33 of those contain the piperazine ring, but only 6

of them are known to cause the syndrome. Hence, models built

with these features separately failed to correctly identify such

drugs. However, by screening for 5-HT2A and/or DRD2 modula-

tors that contain a piperazine ring, we could classify drugs with

80% precision and 67% recall. For other SEs, we observed

redundant signals: 25 out of the 31 drugs that cause skin striae

contain the steroidal scaffold depicted in Figure 4B. In parallel,

we also found skin striae related to glucocorticoid signaling,

which is mediated by steroidal hormones. Here, both the chem-

ical and the biological views refer to the modulation of hormonal

receptors in the skin, well known to be involved in striae forma-

tion (Blanchet et al., 2012).

Overall, 57% of the comprehensive classifiers were obtained

by mixing biological and chemical details. Accordingly, we pro-

pose that chemical information, usually ciphered and limited,

could be used to account for unspecific or intricate phenomena

unperceived by classifiers based on the molecular biology of

drugs.

A Systemic Organization
We finally assessed to what extent the identified feature-SE rela-

tionships are common within SEs occurring in the same system

or organ class (SOC), since this could be a good indicator to

guide toxicological tests without the need for full body systems.

With this aim, we used all of the SE-feature associations (Table

S2) and calculated the overlap of enriched features among the
600 Chemistry & Biology 20, 594–603, April 18, 2013 ª2013 Elsevier
SEs annotated to each SOC, as defined in theMedDRA terminol-

ogy (http://medrramsso.com). As shown in Figure 5, psychiatric

disorders, for instance, map to characteristic regions both on the

chemical and the biological spaces. On the other hand, for meta-

bolism and nutritional disorders our findings are sparse, sug-

gesting that a diverse spectrum of drug-protein interactions

and chemical moieties may elicit them. Interestingly, issues in

the blood and lymphatic systems are poorly organized by the

biological view but are related to a well-defined chemistry (Fig-

ure 5A), in good agreement with the isolated chemical cluster

found in Scheiber et al. (2009). Conversely, therewas a collection

of targets that mostly correlated with vascular disorders. In Fig-

ure 5B, we zoom into a cluster of vascular events related to

adrenergic receptors (ADRB1/2/3), the renin-angiotensin system

(REN and ACE) and drug metabolism (CYP2D6 and SLC15A1/2).

This protein-centered view is compatible with the recent claim

that molecular biology can model satisfactorily cardiovascular

complications (Berger and Iyengar, 2011).

SIGNIFICANCE

We have performed an exhaustive search for chemical

and biological molecular traits in a diverse collection of

human phenotypic responses to drug treatments. Taking

an agnostic approach, we have been able to recover knowl-

edge accumulated over the years and, most importantly,

suggest molecular mechanisms mediating drug SEs that

are poorly understood. However, although we discovered

biological traits related to most SEs, we were only able to

suggest a comprehensive model for a relatively small pro-

portion of them. Notably, our results also highlight that,

for half of the SEs with underlying biological causes, the
Ltd All rights reserved
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adverse and the therapeutic mechanisms of action corre-

late. On the other hand, a chemocentric approach seemed

more assertive, even though chemical features were

harder to flag. We found that roughly 6% of the SEs are

exclusively associated to the chemistry of the compounds,

perhaps implying that the drug action is unspecific. As

expected, our analyses emphasize the need to blend

biology and chemistry to provide molecular explanations

of complex SEs.

Overall, we provide sets of detailed biological and chemi-

cal features that are strongly overrepresented among the

compounds causing a given event. We have presented

some illustrative examples, but, to get the most out of our

analysis, the overrepresented features detailed in Table S2

should be considered along the drug discovery process.

Additionally, our findings confirm that reductionist ap-

proaches are often insufficient to anticipate drug SEs

(Berger and Iyengar, 2011), where genetic variability is

known to play an important role (Becquemont, 2009; Gurwitz

and Motulsky, 2007). We anticipate that, for a significant

number of events, the emerging field of systems biology

will help to understand how complex signals propagate

through cellular networks, eventually unmasking silent

phenotypes.

EXPERIMENTAL PROCEDURES

The experimental pipeline is schemed in Figure 2. First, data is collected. Then

enrichment analyses are performed exhaustively for all of the SEs and for each

of the molecular features. The overrepresentation profile for each of the SEs

constitutes the bulk of our results. Finally, we perform a prediction step to

assess the comprehensiveness of our findings.

Data Sets

Drug Side Effects

We collected information on drugs and their SEs from SidER (v. 2) (Kuhn et al.,

2010), a resource of compiled drug package inserts that uses the MedDRA

dictionary, which is accepted as a standard, clinically validated terminology

for SE reporting. SEs were fetched at the ‘‘preferred term’’ (PT) level and

labeled with the corresponding ‘‘system organ classes’’ (SOCs) fromMedDRA

(v. 14.1). We discarded SEs caused by less than 5 drugs to ensure statistical

robustness, obtaining a space of clinical events composed of a set D of 992

drugs related to a set S of 1,626 MedDRA PTs. Drug SEs were considered

regardless of their frequency.

Biological Space

Therapeutic Targets

The DrugBank database (Knox et al., 2011) combines detailed drug data with

comprehensive drug target information, providing a rich picture of the current

knowledge on the pharmacology of drugs. Accordingly, the human targets

with known pharmacological action in DrugBank constitute a plausible anno-

tation of therapeutic targets. Drugs were mapped to the DrugBank database

(v. 3) using their PubChem (http://pubchem.ncbi.nlm.nih.gov) compound iden-

tifiers. The mapping was further covered using name and structure matching.

We achieved the latter by encoding InChIKeys after stripping salts, removing

hydrogen atoms, and merging stereochemistry with OpenBabel (v. 2.3.1)

(O’Boyle et al., 2011). Overall, we fetched 88 human proteins targeted by at

least 5 drugs in D; this same criterion was used for the rest of the feature types

below.

Protein Interactors

The STITCH database (Kuhn et al., 2012) is an aggregate repository that cap-

tures as much as possible of the publicly available knowledge on protein-

chemical interactions. Wematched the compounds inD to the flat compounds

in STITCH (v. 3) and retrieved their human protein interactors. We required a
Chemistry & Biology 20,
confidence score higher than 0.7 supported by either databases or experi-

ments. In total, we collected 702 gene products from STITCH.

Pathways

To link drugs and human pathways, we mapped STITCH proteins to KEGG

(Kanehisa and Goto, 2000) using the KEGG.db Bioconductor package

(v. 2.9) (Gentleman et al., 2004). 203 pathways entered the analysis.

Biological Processes and Molecular Functions

The full gene ontology (GO) was downloaded (data v. 1.1.2491) and separated

into three directed acyclic graphs (DAGs), namely, ‘‘biological process’’,

‘‘molecular function’’, and ‘‘cellular component’’, considering only ‘‘is a’’ rela-

tionships. We annotated STITCH proteins to the leaves of the ‘‘biological

process’’ and ‘‘molecular function’’ subontologies using the Ensembl cross-

references of the biomaRt Bioconductor package (Gentleman et al., 2004).

The subgraphs spanning all of the protein annotations from the leaves to the

roots had a size of 6,353 and 2,123 nodes, respectively.

Chemical Space

Small Fragments

PubChem provides 2D structural descriptions of molecules through CACTVS

fingerprints. CACTVS fingerprints denote the presence or absence of 881

structural features. Although not strictly limited to small fragments, CACTVS

representations embrace a wide spectrum of structural concepts, such as

element counts, types of ring systems, or atom pairings. In total, we con-

sidered 552 CACTVS fragments.

Scaffolds

A scaffold network was generated as described in Varin et al. (2011). A scaf-

fold network of chemicals consists of molecular scaffolds and smaller parent

scaffolds generated by the pruning of rings (Bemis and Murcko, 1996), effec-

tively leading to a map of substructure relationships. The resulting network

from PubChem structures of D formed a DAG of 197 nodes, with minimal

scaffolds as roots and the molecules without terminal side chains as leaves.

Structural Terms

ChEBI (de Matos et al., 2010) is a dictionary of molecular entities that includes

groups and classes of structures (e.g., imatinib is annotated in ChEBI with

‘‘diazine’’ and ‘‘piperazine’’ terms). The ChEBI ontology (data v. 90) was down-

loaded and converted to a DAG by removing cyclic relationships (‘‘is tautomer

of’’, ‘‘is enantiomer of’’, etc.) and merging the others into a single ‘‘is a’’-like

relationship (Ferreira and Couto, 2010). The strategy to map D onto ChEBI

was analogous to that onto DrugBank.We spanned the ‘‘chemical entity’’ sub-

graph as it was done for the GO terms, obtaining a network of 467 nodes.

Analyses

Feature Enrichments

For each SE, we aimed at profiles of overrepresentedmolecular features of the

eight types above (‘‘therapeutic targets’’, ‘‘small fragments’’, etc.). We per-

formed multiple univariate right-tailed Fisher’s exact tests in each feature

type. Univariate Fisher’s test were calculated under the null hypothesis that

drugs that cause the SE are not more likely to contain the molecular feature

of interest. Only features belonging to at least one of the SE-related drugs

were tested, and we applied a Bonferroni multiple testing correction to keep

the family-wise error rate below 0.05.

In the case of features with an inherent tree-like structure (i.e., GO terms,

scaffolds, and ChEBI structural terms), the ‘‘Elim’’ method was implemented

to investigate from the most specific features to the most general ones (Alexa

et al., 2006). Briefly, the algorithm starts processing the nodes from the leaves

and iteratively travels to parental nodes. Because nodes from the same level

share no edge, they can be investigated independently, and the Fisher’s tests

above may be performed. When a node is processed, the drugs responsible

for a significant enrichment signal in a previous step are removed from the

test, thus prioritizing specific overrepresentations and decorrelating the DAG

structure to provide distinct findings.

Performance of Findings as Classifiers

The discriminative potential of overrepresented features was examined by

using decision tree classifiers based on Gini’s impurity as implemented in

the Scikit-learn Python package (Pedregosa et al., 2011). We evaluated the

accuracy of the classification by means of the F1-score after a leave-one-

out (LOO) cross-validation, which respects sample proportions (see the

Supplemental Experimental Procedures for further information). In a LOO
594–603, April 18, 2013 ª2013 Elsevier Ltd All rights reserved 601
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cross-validation, the SEmodel is repeatedly refit leaving out one drug and then

used to derive the prediction for such left-out compound. After a prediction is

derived for all of the drugs, the precision can be calculated as the number of

true positives over the total number of positive predictions, whereas the recall

scales the true positives over the total number of drugs known to cause the SE

and is thus a measure of sensitivity. The F1 score balances the precision p and

the recall r, i.e., focuses on the true positive rate:

F1 = 23
p3 r

p+ r
(Equation 1)

In order to investigate whether a given SE might be better described

from a composition of perspectives, we also proposed classification

schemes for all possible combinations of feature types. Combined models

were built from overrepresented features of each of the selected types.

Eventually, the model with a higher F1 was selected for each SE, and the infor-

mation gain upon classification wasmeasured using Shannon entropies. Here,

the probability of anticipating a SE for a given drug when using the model is

compared to the probability of anticipating the event solely based on SE

occurrence.

Similarity within System Organ Classes

For each MedDRA SOC, we collected the associated SEs and computed their

pair-wise similarity based on the previously determined enrichment signals,

i.e., two SEs are similar if they have similar overrepresentation profiles. For

independent features, we used the Jaccard coefficient of similarity. For

features organized in a DAG, we used the set-set Lin’s semantic similarity

(Pesquita et al., 2009), where the proportion of drugs annotated to each of

the overrepresented features was used to derive the information content

required by Lin’s measure. Feature-feature similarities were based on the in-

formation content of the most informative common ancestor and ultimately

used to compute the similarity between sets of features.

The similarity of SEs within a SOC was then regarded as the average of the

pair-wise SE similarities, and we estimated the significance of this measure-

ment by bootstrapping 104 samples of SE sets.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

Tables S1–S4, and Figures S1–S4 and can be found with this article online

at http://dx.doi.org/10.1016/j.chembiol.2013.03.017.
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Soler-López, M., Zanzoni, A., Lluis, R., Stelzl, U., and Aloy, P. (2011).

Interactome mapping suggests new mechanistic details underlying

Alzheimer’s disease. Genome Res. 21, 364–376.

Tatonetti, N.P., Ye, P.P., Daneshjou, R., and Altman, R.B. (2012). Data-driven

prediction of drug effects and interactions. Sci. Transl. Med. 4, 125ra131.

Trifilieff, A., Da Silva, A., and Gies, J.P. (1993). Kinins and respiratory tract

diseases. Eur. Respir. J. 6, 576–587.

Tune, B.M., and Fravert, D. (1980). Mechanisms of cephalosporin nephrotox-

icity: a comparison of cephaloridine and cephaloglycin. Kidney Int. 18,

591–600.

Vallon, R., Muller, R., Moosmayer, D., Gerlach, E., and Angel, P. (1997). The

catalytic domain of activated collagenase I (MMP-1) is absolutely required

for interaction with its specific inhibitor, tissue inhibitor of metalloprotei-

nases-1 (TIMP-1). Eur. J. Biochem. 244, 81–88.

Varin, T., Schuffenhauer, A., Ertl, P., and Renner, S. (2011). Mining for bioactive

scaffolds with scaffold networks: improved compound set enrichment from

primary screening data. J. Chem. Inf. Model. 51, 1528–1538.

Vasquez-Pinto, L.M., Nantel, F., Sirois, P., and Jancar, S. (2010). Bradykinin

B(1) receptor antagonist R954 inhibits eosinophil activation/proliferation/

migration and increases TGF-beta and VEGF in a murine model of asthma.

Neuropeptides 44, 107–113.

Vedani, A., Dobler, M., and Smiesko, M. (2012). VirtualToxLab - a platform for

estimating the toxic potential of drugs, chemicals and natural products.

Toxicol. Appl. Pharmacol. 261, 142–153.

Wallach, I., Jaitly, N., and Lilien, R. (2010). A structure-based approach for

mapping adverse drug reactions to the perturbation of underlying biological

pathways. PLoS ONE 5, e12063.

Wetzel, S., Klein, K., Renner, S., Rauh, D., Oprea, T.I., Mutzel, P., and

Waldmann, H. (2009). Interactive exploration of chemical space with

Scaffold Hunter. Nat. Chem. Biol. 5, 581–583.

Williams, D.P., and Park, B.K. (2003). Idiosyncratic toxicity: the role of toxico-

phores and bioactivation. Drug Discov. Today 8, 1044–1050.

Wu, T.Y., Jen, M.H., Bottle, A., Molokhia, M., Aylin, P., Bell, D., and Majeed, A.

(2010). Ten-year trends in hospital admissions for adverse drug reactions in

England 1999-2009. J. R. Soc. Med. 103, 239–250.
594–603, April 18, 2013 ª2013 Elsevier Ltd All rights reserved 603


	Analysis of Chemical and Biological Features Yields Mechanistic Insights into Drug Side Effects
	Introduction
	Results and Discussion
	Summary of the Methodology
	Flagging Biological and Chemical Details
	Abundant, yet Insufficient, Biological Knowledge
	Predictive, yet Limited, Chemical Details
	Chemistry to Complement Biology

	A Systemic Organization

	Significance
	Experimental Procedures
	Data Sets
	Drug Side Effects

	Biological Space
	Therapeutic Targets
	Protein Interactors
	Pathways
	Biological Processes and Molecular Functions

	Chemical Space
	Small Fragments
	Scaffolds
	Structural Terms

	Analyses
	Feature Enrichments
	Performance of Findings as Classifiers

	Similarity within System Organ Classes

	Supplemental Information
	Acknowledgments
	References


