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A chemo-centric view of human health and disease
Miquel Duran-Frigola1, David Rossell2,3 & Patrick Aloy1,4

Efforts to compile the phenotypic effects of drugs and environmental chemicals offer the

opportunity to adopt a chemo-centric view of human health that does not require detailed

mechanistic information. Here we consider thousands of chemicals and analyse the

relationship of their structures with adverse and therapeutic responses. Our study includes

molecules related to the aetiology of 934 health-threatening conditions and used to treat 835

diseases. We first identify chemical moieties that could be independently associated

with each phenotypic effect. Using these fragments, we build accurate predictors for

approximately 400 clinical phenotypes, finding many privileged and liable structures. Finally,

we connect two diseases if they relate to similar chemical structures. The resulting networks

of human conditions are able to predict disease comorbidities, as well as identifying potential

drug side effects and opportunities for drug repositioning, and show a remarkable coincidence

with clinical observations.
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H
umans, in their daily lives, are exposed to a great variety
of chemicals, including drugs and environmental hazards.
Therapeutic and adverse effects of these chemicals result

from a complex interplay with the human body. It is now
recognized that, in most cases, a reductionist viewpoint of such
interplay is far from reality. Cumulative evidence shows that even
the most thoughtfully specific drugs elicit promiscuous interac-
tion profiles1 and, accordingly, many adverse chemical events
lack a compelling molecular explanation2. The emerging opinion
is that systems biology strategies—that integrate several layers of
detail and complexity— will be necessary to zoom out from a
reductionist to a more holistic picture of pharmacology and
toxicology3.

As human biology continues to reveal itself more and more
intricate, it is suggestive to realize that much information about
the behaviour of a chemical inside our bodies is encoded within a
small molecule, with few bonds and atoms. Decoding correlations
between the structure of a compound and its activity in biological
systems has been a prolific research area, and the major goal of
earliest pharmacologists4. Unfortunately, such a compound-
centred view of phenotypes is blind to molecular mechanisms,
lacking theoretical support and, therefore, requiring a
considerable amount of bioactivity data. In particular, for
humans, experiments to obtain this information cannot be
conceived, and the bulk of chemical activity assays is placed
several translational steps backward (that is, at the level of
single receptor binding), with the consequent reduction of the
system complexity.

Recent advances in text-mining techniques and subsequent
curation efforts are committed to compiling direct human
response data from the knowledge accumulated through the
years5,6. Here we benefit from this enterprise to revisit the
classical structure–activity relationship notion, this time for a vast
and diverse list of human diseases. Concretely, we first delve into
chemical structures to identify fragments that are associated with
adverse or therapeutic responses. Then, we propose disease
models based on these fragments, and assess their predictive
efficiency. Finally, we use such models to relate diseases,
providing a chemical map of human phenotypes.

Results and Discussion
Several resources exist that contain information on the interac-
tion of small molecules with our health. Most notably, the
Comparative Toxicogenomics Database (CTD)5 is mainly focused
on environmental chemicals, and reports curated relationships
with a comprehensive list of diseases. Moreover, it classifies
disease annotations as ‘Marker/Mechanism’ (M) or ‘Therapeutic’
(T). M refers to a chemical that correlates with the disease (that is,
a marker) or may act in its aetiology (that is, a toxin), whereas T
indicates that the chemical has a known or a potential therapeutic
role in the condition (that is, a drug). By analogy, hereafter we
refer to adverse and therapeutic disease outcomes simply as M
and T diseases, respectively.

Research worldwide is conducted at different levels of detail
and, accordingly, CTD curators index publications with a
hierarchical organization7. For instance, although some reports
simply congregate ‘Skin diseases’, others are centred on
‘Dermatomyositis’, and even some are focused on a subtype of
this condition called ‘Amyopathic dermatomyositis’. Broad
disease terms are obviously associated with more molecules
(direct annotations plus those regarding child terms); however,
they can involve diverse or more intricate mechanisms. As a
consequence, extracting molecular rules for imprecise phenotypes
may be as challenging as for very specific cases, where data are
scarce. We have explored the disease hierarchy with the intuition

that, in between general and specific disease concepts, there will
be enough information to learn structure–activity relationships.

In total, 934 M and 835 T diseases could be analysed after
considering 8,881 molecules (Table 1). These diseases span the
medical hierarchy end points, and thus are representative of the
variety of known human conditions.

Chemical fragment mining. As a first step in the chemo-centric
disease analysis, we sought to list chemical moieties that could be
independently associated with the phenotype. Support for this
idea is provided by examples of chemical scaffolds showing a
strong correlation with bioactivity profiles8,9. Given, for example,
an M set of molecules (that is, biomarkers and toxins of a
particular disease), we performed an exhaustive molecular
fragmentation and, among the resulting fragments (in this
work, the terms ‘fragment’, ‘moiety’, ‘chemotype’ and ‘scaffold’
are used interchangeably), we kept those that were over-
represented with respect to compounds unrelated to the disease.
We considered non-redundant sets of molecules to minimize
annotation biases, and designed the statistical analysis so that the
final selection of fragments was simplified in terms of
substructural dependencies, without detrimenting posterior
predictive models (see Methods). Exactly the same procedure
was applied to therapeutic annotations, examining T molecules
instead.

The median molecule broke into five fragments, ranging from a
single piece up to 200. A total of 98,077 moieties were considered.
After the significance analysis, both for M and T sets, we obtained
around 200 over-represented fragments per disease, and for each
fragment, we found four associated diseases. Owing to initial
permissive statistical requirements, this constituted a low con-
fidence (LC) set of B5� 104 fragment—disease associations that
was ideal for later achieving predictive power. When we controlled
for the false discovery rate below 1% and applied additional
constraints (see Methods), we obtained a subset of 7,411 high
confidence (HC) fragment—disease pairs (Supplementary Data 1).
These fragments are well represented in the known bioactive
chemical space (Supplementary Fig. 1), and include both expected
and novel moieties, emerging from diverse sets of molecules
(Supplementary Fig. 2). Within HC pairs, a fragment was related to

Table 1 | Disease and fragment statistics.

M T Total

Diseases 934 835 1,176
Molecules per disease 36 25 30
LC fragments 23,135 28,325 37,809
HC fragments 910 1,107 1,550
LC fragments per disease 204.5 196.5 200.5
HC fragments per disease 5 6 6
Liable (M) and privileged (T) fragments 348 367 715
Diseases with Z1 HC fragment 385 409 794
AUC 0.613 0.641 0.627
Specificity 0.878 0.882 0.880
Sensitivity 0.265 0.292 0.278
Balanced accuracy 0.571 0.588 0.579
Positive predictive value 0.032 0.023 0.029
G-mean 0.463 0.488 0.475
F1-score 0.053 0.044 0.049
Diseases with AUC40.7 184 216 400

AUC, area under the ROC curve; HC, high confidence; LC, low confidence.
Analysis of M and T chemical–disease annotations, ‘Total’ column refers to the union of both
categories. When applicable, median values are shown for count data, whereas mean values are
shown for performance metrics. Point performance metrics are taken with default 0.5 cutoff in
the random forest classifier. The cutoff could be slide along the classifier’s outcome to get
different point performances along the ROC space.
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a median of 2 M or T diseases, and a disease was linked to six
fragments (Fig. 1a). At least one HC fragment could be found for
41% and 50% of M and T diseases, respectively (Table 1),
providing a chemo-centric molecular description of phenotypes
that is interpretable for the medicinal chemist, a property that has
been recently vindicated in chemoinformatics10.

Over-represented fragments in the chemical space. Identified
fragments exhibit a varied chemical repertoire (Fig. 1b). HC
moieties have a median size of 17 atoms, including 1 ring and 4
heteroatoms. Interestingly, 32% of the fragments follow the ‘Rule
of Three’ (Ro3; molecular weight (MW)o300, number of
hydrogen bond donors r3, number of hydrogen acceptors r3
and logP r3). Backward studies found that fragments that
accomplish these rules are good starting points to meet the
Lipinski condition11, or ‘Rule of Five’, that concerns
bioavailability of oral drugs (that is, MWo500, hydrogen bond
donors r5, hydrogen acceptors r5 and logP r5).

Activity-related fragments offer a simple way to compose
customized chemical spaces. In Supplementary Data 1 and 2, they
are given together with associated diseases, enabling the design of
tailored chemical libraries. In general, although our collection
covers a broad and representative spectrum of chemical features,
it also reflects the diversity of CTD and most chemogenomics
repositories12 (Fig. 1a, middle), which contain only a small
number of well-represented scaffolds, and a large proportion of
singular moieties. The balance between variety of fragments
and coverage will depend on the needs. Similar to the case of

kinase-focused libraries13, we might want to achieve a thorough
coverage of a narrow pharmacological space to address, for
example, ‘Anterograde Amnesia’, where only two HC fragments
represent 55% of the beneficial molecules. Sparse libraries would
be preferable in cases like ‘Chronic Obstructive Pulmonary
Disease’, where as many as 34 HC fragments can be extracted
from the corresponding 27 medicines, spanning 74% of the active
space and requiring a higher diversity.

Accounting for this diversity is crucial in order to move away
from chemical clichés14. The structural variety of known drugs15

and, in general, of registered compounds is very low—the more
frequently a scaffold has been used, the more likely it will be used
again16. However, we have seen that our reported fragments not
always emerge from well-studied moieties, yielding valuable novel
chemotypes (Supplementary Fig. 2). Recently, it has been
suggested that a large part of fragment space is indeed
synthetically accessible, which also calls for a more exploratory
chemistry17. If orphan regions of chemical space are to be
populated, we propose that our findings could aid the charting of
its biologically relevant, primordial regions.

Existence of liable and privileged structures. When analysing
over-represented structures, the immediate question is whether
fragments exist that are mostly associated with adverse events,
whereas others are usually present in therapeutic molecules
(Fig. 2a). The former would correspond to problematic structures
that should be avoided in, for instance, medicinal chemistry
endeavours18. On the contrary, the latter are desired, privileged
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Figure 1 | Over-represented fragments. Fragments per disease (a) and diseases per fragment (c), considering only the HC set. In b, a Voronoi diagram

where each fragment is a shape with area and colour proportional to the number of molecules that contain it (best match similarity 40.8). To

illustrate chemical diversity, we display the cumulative distribution of the total number of atoms (d), the number of heteroatoms (e) and the number

of rings (f). Distributions are decorated with illustrative fragment structures. M and T fragment–-disease relationships are shown in orange and green

colours, respectively.
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chemotypes of potential profit in the design of libraries for
forward pharmacology practices like cell-based phenotypic
screening19.

As expected, it was slightly easier to detect privileged than
liable structures (384 versus 367 liable HC fragments, respec-
tively, over a total of 45,607 T and 72,804 M chemical—disease
pairs considered (Table 1)). The medicinally relevant space is
influenced by size constraints and ease of synthesis20, and
pharmaceutical research is often incremental. Liable fragments,
which also occur in drugs and environmental chemicals, may
have been abandoned or remained unperceived, and thus are less
well represented (Wilcoxon’s test (Wt) P-value o2.2� 10� 16;
Supplementary Fig. 3). As a consequence, the LC liable fragment
occurs in a higher proportion of M compound—disease pairs
than the LC privileged fragment in T pairs (Wt P-value
8.0� 10� 10), implying that it might be important across a
range of phenotypes, although we can only capture the
association with weak statistical signal. On the other hand, as
expected, the trend is inverted for HC fragments (Wt P-value
1.4� 10� 6), as only a thorough exploration of chemical space
allows for extraction of strong structure–activity relationships.

Of particular interests are those privileged fragments that have
not been successfully used in drug development yet. Out of the
367 fragments that could be considered as privileged (480%
T both in HC and LC sets), 40% were not present in any approved
or experimental drug reported in the DrugBank21 (note that CTD
scope goes beyond drug molecules: 45% of the compounds with

T annotations were not found in DrugBank above a similarity
cutoff of 0.8). In Fig. 2b, for example, fragment 1 constitutes a
fraction of the ergoline tetracycle. Mesulergine is a psychoactive
compound of the ergoline class with a halted development because
of adverse histological abnormalities in rats22. We speculate that 1,
that is present in six other molecules in CTD, could be kept and
used to derive safer compounds outside the ergoline family.
Fragment 2 is a propanolamine that we found useful to treat
‘Cardiac Arrythmias’ and could be further evolved into Alprenolol
alternatives, a close analogue in the market. Finally, 3 is the
scaffold of Dexelvucitabine, a failed anti-HIV and anti-HBV agent
that, while singular in structure, displays features similar to other
desirable chemotypes, and is found over-represented in as many as
eight therapeutic indications—safer derivatives of Dexelvucitabine
could be of potential interest.

Another group of interesting moieties, at least in retrospective,
corresponds to those that are frequently included in drug molecules
despite being mostly associated with adverse events. We recognize
that, in general, drugs (usually prescribed for few indications) will
indeed elicit many adverse reactions. However, in CTD the M/T
annotation rate is quite balanced (less than 2:1), making 480% M
a meaningful definition of a liable fragment. In the right panel of
Fig. 2b, structure 4 accounts for the prototypical hydrochlorothia-
zide, a class that includes methylclothiazide and cyclothiazide.
Despite its popularity, we found a large number of adverse events
associated to this class, ranging from ‘Hypokalemia’ to ‘Arthritis’.
As done elsewhere23, 4 could undergo a scaffold-hopping exercise
to find better analogues. Fragment 5, present inside 13 medicines
like Sufentanil, constituted a liable HC fragment for five conditions,
including ‘Sinus Arrythmia’ and ‘Muscle Hypertonia’. Similarly, 6
is part of several bronchodilator agents and resembles the ancestor
Norepinephrine drug. We found eight HC associations of 6 with
inconvenient events such as ‘Tachycardia’ and ‘Hypertension’,
suggesting that further generations of Norepinephrine successors
are likely to remain unsafe.

Predictive models. Although valuable, identifying the presence of
a characteristic fragment in a molecule is usually not enough to
accurately infer an association with a disease24,25. Very often, a
combination or mutual exclusion of several moieties will
determine the outcome. In general, predictive power and
interpretability of structure-activity models are two different
objectives that are difficult to achieve simultaneously. On this
matter, a good tradeoff is offered by LC fragments, which are
more frequent among disease-related molecules, and thus are
promising variables for starting machine learning24.

Given its reduced cost, fragment-based learning can be applied
at virtually every step of the drug discovery pipeline, and offers a
means to join chemoinformatics with expert opinion26. Its
performance will largely depend on the specificity of the
underlying biology, and the proper, delimited representation of
the active chemical space. As a result, although detecting over-
represented fragments gets easier for highly annotated, broad
disease terms, predictive capability does not follow the same trend
(Supplementary Fig. 4).

We built a fragment-based chemical classifier for each of the
934 M and 835 T diseases (Fig. 3) using Random Forests (RFs).
RFs allow detecting interactions between fragments, for example,
when the combination of two fragments has a therapeutic effect
but each individual fragment does not. Table 1 provides a general
view of the results. It shows, for instance, that point prediction
performance metrics sensible to data imbalance (namely, the
positive predictive value and the F1-score) take values close to
zero. This is an expected observation given the pronounced
imbalance of positive/unknown sampling (a median of 30:4,250).
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Also, note that sensitivity could be increased at the expense of the
high specificity, and that the decision cutoff could slide at will so
that, for example, G-mean is optimized (see Methods). The area
under the receiver operating characteristic (ROC) curve (AUC)
measures the compromise between sensitivity and specificity at all
possible cutoffs, and it is widely used to assess the performance of
predictive models. Overall, 184 M and 216 T disease models
exhibited a cross-validated AUC above 0.7. The successful models
did not display a distinct chemistry (Supplementary Fig. 5),
and covered 13% and 7% of the full medical hierarchy end
points, respectively. Together, both results evidence our scarce
knowledge of the relevant chemical space, and the difficulty to
assess a priori if a region of it has been sufficiently exploited.

Therapeutic effects are better predicted than adverse events.
When analysing accurate, plausible classifiers (AUC40.7), the
first observation is that therapeutic outcomes are better modelled
than adverse events, that is, there is a larger proportion of T cases
with AUC40.7 (Fisher’s test (Ft) P-value 0.001, and Wt P-value
3� 10� 8 for whole distributions; Fig. 3). Again, this arises from
the fact that the therapeutic space is composed of incremental
discoveries (Supplementary Fig. 3), and emphasizes the difficulty
of the predictive toxicology task.

ROC curves on the right of Fig. 3 correspond to satisfactory
models of T diseases. ‘Osteomyelitis’, which refers to bone
infections, is treated with antibiotics of well-used families
(quinolones, cephalosporins, penicillins and so on). Thus, it is
easy to infer whether a molecule will be suitable for addressing
such condition. A similar chemistry has been learnt for
‘Pseudomonas Infections’, for instance. Analogous conclusions
can be drawn for ‘Paranoid Schizophrenia’, where, for example,
benzodiazepines and phenothiazines are annotated, and for
‘Supraventricular Tachycardia’, a cardiovascular complication of
which the aforementioned propanolamines are prominent
examples.

Other chemicals, rather than treating, may trigger cardiovas-
cular events. In fact, these are commonly alerted drug side effects.
Pergolide, for instance, was withdrawn from the market because
of heart issues—we predicted its association with ‘Aortic Valve
Insufficiencies’ (this annotation was not available from CTD). A
plausible model was also obtained for ‘Mesenteric Valve
Insufficiencies’ (left ROC curves in Fig. 3). In general, for heart
events, even when the underlying biology remains intricate27,
there is a chemical signal that can aid prevention. In Fig. 3, we
also display the cross-validation of the ‘Uterine Haemorrhage’
model, and, regarding the same organ, that of ‘Endometrial
Neoplasms’.

Not all types of diseases are equally predictable. Following the
last example above, we find support for the intuition that
travelling the disease hierarchy from specific to broad terms can
help to find informative chemical sets. Accordingly, although
‘Neoplasms’ are poorly understood as a whole (AUC¼ 0.66),
we obtained a number of accurate models for certain organs
and types (Fig. 4). In particular, we could solve many M
cancer cases, whereas few successful T models existed.
This illustrates that we know more of the chemistry of carci-
nogens and cancer markers than of the chemistry that is needed
to cure it. A similar conclusion could be drawn for ‘Male’ and
‘Female Urogenital Disorders’. On the contrary, we could pro-
vide several plausible classifiers for the treatment of ‘Mental
Disorders’, meaning that the chemical space that addresses such
conditions has been well exploited. Similarly, we have deep
knowledge on treating ‘Bacterial Infections and Mycoses’,
whereas, as expected, there is little chemistry that may facilitate
them (the only example we found was ‘Candidiasis’, where most
relevant structures corresponded to steroidal frameworks like
glucocorticoids28). The rest of disease classes shared, in general,
a balance between M and T plausible models. Remarkably, some
disease classes were poorly modelled. We attempted, for
instance, 41 M ‘Eye Diseases’, of which as few as 3 yielded a
satisfactory classifier. Similarly, we only obtained a good
predictor for 4 of the 28 T ‘Endocrine System Disorders’
(Supplementary Fig. 6).

Indeed, for a majority of diseases we lack an accurate model.
We believe, however, that there is room for improving chemical
classifiers based on literature mining. One important hindrance in
training these classifiers is the absence of truly negative data
(chemical—disease pairs that have been verified not to interact, as
opposed to not having been observed so far). The so-called
‘positive-unlabelled learning’ tackles this issue and is now being
implemented in biomedicine29. However, in our hands, such
methodologies30,31 did not improve predictive power, most likely
due to the sparseness and reduced size of the set of unknowns
(Supplementary Fig. 7), an issue that, most likely, will be solved as
disease—chemical annotations continue to increase32. Also,
including physicochemical properties of compounds could be of
enormous interest, particularly in the case of adverse events,
where mechanisms of action may not be target-driven.
Accordingly, the identification of toxicophores is usually
thought of in metabolic and reactivity terms18, as
toxic effects can result from polar or nonpolar processes,
uncoupling of oxidative phosphorylation, thiol-alkylation and
so on. In this regard, reactivity prediction methods should be
appropriate33, particularly for nonspecific complications like
tissue necrosis, carcinogenicity or immune-mediated toxicities.
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Recently, a combination of structure and reactivity analysis
was applied to select groups that shared structure and
electronic state34, and it was recommended that compounds
undergo a structural clustering before the reactivity assessment,
suggesting that our results could be readily complemented with
reactivity profiles.

Disease networks based on underlying chemistry. In this study,
we have analysed each disease separately. However, results should
be integrated to provide a general view. For this purpose, network
representations are a prominent systems biology tool because
they integrate relationships between different entities, facilitating
contextualization and providing a general view35,36. In particular,
disease networks help to assimilate the diversity of human
conditions. In a seminal work, Goh et al.37 proposed that two
diseases could be related if they share a genetic origin. The
resulting disease network was able to unveil biological modules
and therefore offered a means to link the molecular and the
organism levels.

Instead of connecting two diseases when the same genes
participate in their aetiology, we link them if they relate to a similar
chemistry, that is, when the molecules associated with the one are

comparable to those associated with the other. The resulting
chemo-centric map of human conditions is of singular interest for
drug development, as it is focused on intervention, that is, on
disease relationships that are directly based on effector compounds.

The disease comorbidity network. When we relate M disease
models, the corresponding network is a comorbidity map, where
two conditions are connected if the toxins and markers of the one
are similar to those of the other, implying that the two diseases
could occur simultaneously. In practice, we screened all M
molecule sets annotated to the 934 diseases against the 184 suc-
cessful M models, and we related two diseases if the AUC of the
cross-classification was higher than 0.7. This yielded a network of
12,610 edges (Table 2 and Supplementary Data 3). Interestingly,
such a chemo-centric comorbidity map captured disease co-
occurrences detected in the history of more than 30 million
patients38: a medical semantics mapping found that a large
number of our disease associations have indeed been observed
in the clinics (9,788 matches, the corresponding contingency
table yielded a Ft P-value of 4.5� 10� 28), providing an
excellent independent validation of our findings (see Methods).
For instance, we predicted that molecules associated with
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our data set.
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‘Aortic Valve Insufficiency’ are likely related to ‘Neuroleptic
Malignant Syndrome’ (AUC¼ 0.88). In turn, the ‘Aortic Valve
Insufficiency’ model up-ranked ‘Elimination Disorders’ molecules
(AUC¼ 0.82; Fig. 5). In patients, not necessarily due to exposure
to chemicals, these relationships have been observed with relative
risks (RRs) of 56.7 and 29.5, respectively38. Overall, together with,
for example, studies of metabolic pathways39, our results show
that a chemical viewpoint is useful to account for the underlying
molecular connection of human conditions.

The drug repositioning network. Analogously, we may relate
diseases based on T records and obtain a network that links two
conditions when medicines for the first could also serve in the
second. This so-called ‘drug repositioning network’ is appealing
given the time and financial burdens of the drug discovery
process. Currently, a number of computational approaches are
taken in this direction40, and even the simplest methods41 are
proposing remarkable opportunities. After screening the 835 T
compound-disease pairs against the 216 good T models, we
obtained a network of 14,590 edges (Table 2 and Supplementary
Data 4). Some diseases like ‘Hypertension’ had a high in-degree
(in this case, 235), meaning that they could be the repurposing

opportunity of many indications, reflecting the clinical
complexity of this physiological phenomenon associated with
cardiovascular, endocrine and nervous system components. On
the other hand, ‘Urethral Diseases’ displayed an out-degree of
137, that is, its 11 medicines could have several other uses. When
compared with a network drawn from approved indications of
drugs42, we observed a significant overlap (10,731 common edges,
Ft P-value 3.4� 10� 13), reinforcing the validity of our results.
This network based on approved drugs represents the
polypharmacy of medicines, and links two diseases if they are
treated by a significant number of common drugs (see Methods).
Even after a conservative semantic mapping, 3,859 of our
repositioning opportunities were not found in such network,
implying that they remain largely unexplored. Among these, we
propose the use of ‘Rhinitis’ therapeuticals like ketotifen for the
treatment of ‘Personality Disorders’ (AUC¼ 0.81), and the
repurposing of antibronchitic drugs to treat ‘Supraventricular
Tachycardia’ (AUC¼ 0.81; Fig. 5).

The drug side effect network. Finally, linking T and M diseases
yields a map that relates treatments to potential adverse events.
As shown in Table 2, we screened the 835 T chemical–disease

Table 2 | Network statistics.

Target diseases Source diseases Nodes Directed edges In-degree Out-degree Undirected edges Degree

Comorbidity 184 M 934 M 934 12,610 44.5 7 10,917 8
Repositioning 216 T 835 T 835 14,590 63 7 11,997 8
Side effect 184 M 835 T 1,019 9,921 31.5 2 9,921 8

General statistics of the chemo-centric disease networks.

Rhinitis

Supraventricular
tachycardia Neointima

Hyperpituitarism

Aortic valve
insufficiency

Serotonin
syndrome

Elimination
disorders

Neuroleptic
malignant
syndrome

Bronchitis

Personality
disorders

Comorbidity network Repositioning network Side effect network

Figure 5 | Disease networks. Disease comorbidity, drug repositioning and drug side effect networks. Examples discussed in the text are depicted with

directed links on top of each network. To select these examples, we looked for strong correlations (see Methods) occurring between diseases in different

categories. None of the cases share annotated chemicals, highlighting the value of our fragment-based models. Networks are displayed with a gravity

layout, being node size proportional to the number of related chemicals. Network statistics can be found in Table 2.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6676 ARTICLE

NATURE COMMUNICATIONS | 5:5676 | DOI: 10.1038/ncomms6676 | www.nature.com/naturecommunications 7

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


pairs to predict undesired side effects among the 184 M
satisfactory models. The resulting network contained as many
as 9,921 relationships (Table 2 and Supplementary Data 5).
In this network, large peripheral nodes are particularly
interesting: ‘Seizures’, for instance, has a well-defined therapeutic
chemistry (AUC¼ 0.71) related to as many as 255 molecules,
and is not linked to any of the adverse events, suggesting
that these treatments are rather safe. When we compared our
predictions with side effects extracted from drug package
labels43, we also observed a significant coincidence (8,686
common associations, Ft P-value¼ 6.9� 10� 21), while still
providing 1,235 novel predictions. One of them is the possible
appearance of ‘Serotonin Syndrome’ after exposure to
‘Hyperpituitarism’ (for example, carmoxirole) and ‘Neointima’
agents like nebivolol (AUC of 0.78 and 0.81, respectively; Fig. 5).
Nebivolol, in fact, is metabolized by CYP450 2D6, resembling
serotonin reuptake inhibitors—concomitant treatment with such
inhibitors may lead to overdose44. Overall, these novel
associations contribute to the completion of putative drug side
effect profiles. In the last years, such profiles have shown useful
to elucidate molecular events from phenotypic observations45, in
turn proving that a lot can still be learnt from the always
imperfect drug molecules46.

Future perspectives. The current perception is that systems
biology will aid the learning of drug action by rationalizing the
influence that small molecules exert on our health47. In most
cases, drug action is mediated through receptors, being of critical
importance their identification. In a previous work48, we reported
protein targets shared among drugs with a common effect. Our
approach was agnostic in the sense that it considered a vast
chemical–protein interactome, and was therefore suitable to
initiate a systems view. Although we recognize the relevance of
target and off-target identification, we found this knowledge
insufficient to anticipate side effects, in good agreement with the
translational gap in drug discovery49. To complement this lack of
knowledge, we also mined characteristic chemical moieties inside
the drugs with the aim to surrogate phenomena that molecular
biology is not yet able to consider, as done by others50. We learnt
that chemical structures treasure a remarkable predictive power,
although they are difficult to inspect given the small number of
known drugs and their sparse distribution across the chemical
space. Now, our results highlight that collecting and grouping
molecules with enough insistency aids the modelling of
phenotypic implications with no need to acknowledge all the
underlying biological events. Several studies have proven the
value of this chemo-centric view of biology. Most notably, such a
view allowed for the prediction of ligand binding to protein
targets with unresolved structures51. Databases like ChEMBL52

and BindingDB53, among others, have been essential to decipher
relationships between chemical features and affinity, and a ligand-
centred description of the binding event is now feasible4. In these
databases, hundreds of thousands of distinct compounds are
recorded. The ambition to relate chemical structures directly to
human-body responses is, undoubtedly, a more challenging task,
given the complicated intrinsic biology and the lack of compound
records. We have shown that, even when only a few thousand
molecules are available, it is already possible to identify scaffolds
that correlate and predict phenotypic outcomes. We recognize,
however, that scaffold identification is only a starting point, and it
may not be sufficient in many cases—ultimately, it will be the
modulation of biological networks what determines phenotype,
and slight differences in chemical structure may translate into
dramatic changes of activity. Moreover, some of the identified
scaffolds are the result of follow-on studies and biased reporting

systems, narrowing the applicability domain of our method to
diseases with varied and abundant annotation of chemicals.

Despite these limitations, we anticipate that the number of
well-modelled phenotypes could increase considerably in the
upcoming years. Concretely, we estimate that the amount of
accurate classifiers could be doubled if we would double the
annotation of certain diseases (Supplementary Fig. 8). Approxi-
mately, increasing by 25% the number of chemical–disease
records could result in this doubling of satisfactory models. To
guide disease annotators, in Supplementary Data 2, we detail
which diseases fall on a learning plateau, be it because they are
sufficiently apprehended or largely under-annotated, and which
cases will benefit most from curation efforts54. Likewise,
improving disease annotation will enable the modelling of more
specific phenotypes: terms in this study are slightly broader than
those commonly used in drug discovery, and these are, in turn,
notably unspecific relative to the existing medical vocabulary
(Supplementary Fig. 9).

To grow the body of chemical records, improvements in text
chemical entity identification55 and new knowledge discovery
concepts56 will be fundamental. Opposite to, for example,
genomics, large-scale experimentation in chemistry has been
conducted primarily by pharmaceutical industry and,
traditionally, proprietary data have not been available to the
community. Therefore, scientific literature is still a major support
to publish chemical data. We expect that, with the advent of text-
mining technologies, resources like CTD will continue to expand in
size and scope. Moreover, current chemical–disease records are
being gathered together with disease-related genes, which manifests
that knowledge is being assembled at a fast pace towards a holistic
view of biology. Only now, network-based tools to handle such
complexity are flourishing57, and urgently demand more chemistry
awareness58. In this context, our study brings chemical cognizance
to the systems level, fulfilling a need of translational sciences, and
widening the applicability of network-based strategies.

Methods
Exhaustive fragmentation. Compound structures were obtained by querying the
Chemical Identifier Resolver (http://cactus.nci.nih.gov) with CTD names. In
addition, we fetched the fraction of chemicals contributed by CTD to PubChem
(http://pubchem.ncbi.nlm.nih.gov). Organometallic compounds were excluded,
inorganic salts were removed from mixtures and stereochemical information was
not considered. In order to include only ‘small molecules’, where fragments would
have a similar structural impact, substances with a MW above 800 were also
discarded. Figure 6 schemes the processing that these molecules underwent.

We exhaustively fragmented each chemical structure through recursive bond
breaks down to a minimum size of five atoms. We followed JChem’s (http://
www.chemaxon.org) CCQ fragmentation approach, based on cutting carbon–
carbon bonds (CC) if at least one of the carbons is bound to a heteroatom (Q).
Thus, CCQ rules do not modify functional groups, ensuring that the resulting
fragments conserve the chemical features of the original molecule. Aliphatic rings
and aromatic systems were not cleaved either. The 5% of molecules that broke into
more than 200 fragments were dismissed.

Disease annotation of chemicals. We fetched chemical–disease associations from
CTD (January 2013)5. This knowledgebase includes a controlled vocabulary7 that is
based on the ‘Diseases’ branch of the National Library of Medicine’s Medical
Subject Headers (MeSH). MeSH hierarchy grows from broader to more specific
disease terms, and molecules are annotated throughout. General concepts include
annotations from the more specific ones.

To assign M and T molecules to each disease, we fetched curated (‘Direct
evidence’) annotations from CTD. Ambiguous annotations (M and T,
simultaneously) were removed. Molecules labelled in CTD as ‘inferred’ (through
gene—disease triangulation59) were also discarded as they were confounding the
obtainment of disease classifiers (Supplementary Fig. 10). The set of ‘unknown’
molecules corresponded to all of those entries that shared no relationship (neither
curated nor inferred) with none of the terms in the corresponding branch of the
disease vocabulary. Only diseases annotated with at least ten molecules entered
further analysis. In total, we kept 934 M and 835 T chemical–disease relationships.

To obtain non-redundant sets of chemicals for each disease, we clustered a full
pair-wise chemical similarity matrix. Chemical similarity was measured with the
widely used topological fingerprints based on hashed molecular sub-graphs, as
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implemented in the RDKit (http://www.rdkit.org). The resulting matrix underwent
an unsupervised clustering with the Butina algorithm60, which is fast, consistent,
parameter free and performs well with hashed fingerprints. Clusters were flattened

at a Tanimoto cutoff of 0.8, that is, at a distance of 0.2 to the central molecule.
Whenever a disease was associated with several chemicals in a cluster, the molecule
with the highest accumulated similarity to the rest was kept as representative for
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the group. Analogously, we obtained non-redundant sets of disease-unrelated
chemicals (unknowns).

Fragment mining. For each M or T compound–disease pair, we outlined a matrix
W listing small molecules in the rows and fragments in the columns. To fill in W,
we screened each molecule i against all of the fragments. In a molecule–fragment
comparison, we aimed at checking if the molecule contained at least one fragment
that was similar to that of interest. This comparison was performed as follows.
First, we broke compound i into fragments. Each of the fragments in the resulting
set was compared with fragment j. The score of the molecule–fragment comparison
corresponded to the highest Tanimoto similarity among the individual fragment–
fragment comparisons. Here similarity was measured using Molecular Access
System (MACCS) fingerprints, and was kept in cell Wij. MACCS keys are a set of
questions about a two-dimensional structure, and are thus useful to capture che-
mical features beyond simple topological matching. Using MACCS fingerprinting,
we increased the power to detect relevant features, while diminishing the sparse-
ness of W.

Then, the width of W was shrunk using statistical filtering. In the resulting
matrix WLC, for each column j, rows displaying a MACCS similarity 40.8 were
counted, and the significance of the over-representation of fragment j among
molecules related to the disease was assessed using a right-tailed Fisher’s exact test.
Please note that the contingency table classifies ‘positives’ and ‘unknowns’ (instead
of ‘negatives’): this reduces statistical power, but should not affect the true positive
rate (Supplementary Fig. 11). Those fragments with a P-valueo0.1 were retained25.
Note that the selection of LC fragments underwent a final step that ensured an
acceptable tradeoff between classification performance and statistical signal (see
Data balancing below).

From LC fragments, we selected a subset of HC representatives. In W, these had
to elicit an odds ratio Z10, a minimum support of three molecules and a
Benjamini–Hochberg adjusted P-value o0.01. To report a diverse and
representative set, we grouped those fragments that occurred in the same
molecules. From each group, the fragment associated with more diseases was kept.

Data balancing. In general, few chemicals are known per disease, whereas the
majority of chemicals is not related to it. We balanced WLC using a combination
of under-sampling and SMOTE over-sampling61,62. For each case in the minority
class (that is, chemicals annotated with a disease of interest), five new examples were
created, up to a maximum of 1,000 instances. The majority class (that is, ‘unknown’
cases) was under-sampled to achieve a 1:1 proportion with the minority class.

Then, columns in the balanced data set (WLC0) were hierarchically clustered
using Fastcluster63, and branches were pruned using DynamicTreeCut64 with a
minimum cluster size of 1. Inside each cluster, fragments were compared all-
against-all to detect parent–child relationships. For a lineage of fragments, the one
with the best initial over-representation P-value was retained. Overall, this led to
matrices WLC0 0 that had an even sampling through the rows and a simplified set of
LC over-represented fragments in the columns.

Chemical classifiers. WLC0 0 matrices above are suitable for machine learning
because they have a balanced class distribution, and a representative and reason-
ably distinct set of variables. Given its general robustness in the learning of
structure–activity relationships65, we chose to build chemical classifiers with the RF
algorithm. For this, we used the randomForest R-package66, growing 10,000 trees
and taking default values for the rest of parameters. As each tree returns a decision,
class probabilities were estimated from voting.

As schemed in Fig. 6, we performed a stratified tenfold cross-validation of
predictive models. Test and training sets were split before the LC fragment mining
step (that is, before the variable selection, and therefore previous to the data
balancing). Performance metrics in Table 1 were obtained from the reassembled
vector of test predictions.

Disease network construction. In a chemo-centric disease network, disease A is
linked to disease B if molecules annotated to A are predicted to relate with B. As we
obtained M and T models, we can propose, at least, three different networks (Fig. 5a
and Table 2): (i) a comorbidity network, that links A to B if chemicals that cause A
are predicted to cause B; (ii) a drug repositioning network, where chemicals
employed to treat A may also be useful to treat B and (iii) a drug side effect network
that relates A to B when chemicals used in the treatment of A could cause B.

To infer an edge from A to B, we tested A curated chemicals together with a set
of chemicals unrelated to A and B using the B RF classifier. The strength of the
association was assessed with the AUC of the cross-classification ROC plot, where
molecules predicted to associate with B are checked for their association with A.
Note that we removed easy cases by discarding disease pairs in the same branch of
the medical hierarchy. To mine the examples discussed in Fig. 5, we only
considered those pairs that shared no chemicals, highlighting the importance of the
fragment mining procedure.

Network analysis. Comparison of the comorbidity network with a clinical disease
co-occurrence network: a clinical disease network was obtained from Hudine38, a

comorbidity network that reports the RR of experiencing a disease when another
disease is diagnosed. In Hudine, clinical reports are stored using the International
Classification of Diseases, 9th revision (ICD-9). The mapping between MeSH and
ICD-9 (three-digit code) terms was achieved using BioPortal’s (http://
bioportal.bioontology.org) Unified Medical Language System (UMLS) concepts,
and by best-matching MeSH and ICD-9 UMLS concepts with the UMLS-similarity
Perl-package67 (vector relatedness40.8). We assigned a significance P-value to the
coincidence between our chemo-centric network and Hudine comorbidities
(RRZ20 or fZ0.06)38 by using a right-tailed Fisher’s exact test. The
corresponding confusion matrix classified predicted and unpredicted pairs, and
pairs that were mapped and not mapped to Hudine. To demonstrate the need for
robust disease models, we also built a comorbidity network (same (A) and (B) sets)
that linked A to B simply if at least 50% of A LC fragments were LC fragments of B.
In addition to a reduction in the number of edges of two orders of magnitude, we
observed no significant coincidence with the clinical network.

Comparison of the drug repositioning network with a drug repositioning
network derived from known drugs: disease–disease associations were inferred
based on drug indications42. For a pair of diseases A and B, we filled a 2� 2
confusion matrix counting the number of drugs that are used to treat both, one or
none of the diseases68. From this matrix, we obtained the two-tailed P-value of a
Fisher’s test and the Matthews correlation coefficient. A and B were linked in the
drug repositioning network if P-value r0.05 and Matthews correlation coefficient
Z0.15 (ref. 68). Like above, node mapping was achieved using UMLS term
similarities, and the significance of the overlap with our results was evaluated
analogously. Here again, we checked that the modelling step was important to
provide significant results.

Comparison of the side effect network with side effects reported in drug labels:
we collected a side effect network from ref. 68. This network represents side effects
that occur frequently among approved drugs prescribed for a particular disease. As
done for the comorbidity and the drug repositioning networks, we analysed its
coincidence with our chemo-centric map, and confirmed the convenience of
disease models for building the network.
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