

Año académico 2012-13

Asignatura 10104 - Fenómenos cooperativos y

fenómenos críticos: aplicaciones

Grupo Grupo 1, 1S

Guía docente A Idioma Castellano

Identificación de la asignatura

Asignatura 10104 - Fenómenos cooperativos y fenómenos críticos: aplicaciones Créditos 1.2 presenciales (30 horas) 3.8 no presenciales (95 horas) 5 totales (125

horas).

Grupo Grupo 1, 1S **Período de impartición** Primer semestre

Idioma de impartición Inglés

Profesores

Horario de atención al alumnado

Profesores	Hora de inicio	Hora de fin	Día	Fecha inicial	Fecha final	Despacho			
Maximino San Miguel Ruibal	No hav sesiones definidas								
msr260@uib.es	To hay sessones definition								
	12:00h	13:00h	Lunes	24/09/2012	21/09/2013	207 Edifici			
Tomás Miguel Sintes Olives tomas.sintes@uib.es						Instituts			
tomas.sintes@ulb.es						Universitaris			

Titulaciones donde se imparte la asignatura

Titulación	Carácter	Curso	Estudios
Máster Universitario en Física	Posgrado		Posgrado
Máster Universitario en Física de Sistemas Complejos	Posgrado		Posgrado

Contextualización

Asignatura compartida del Máster en Física de Sistemas Complejos (IFISC) y del Máster en Física cuyos objetivos se centran en la adquisición de conceptos y metodologías básicas en el estudio de fenómenos críticos, la dinámica de transiciones de fase, la formación y crecimiento de estructuras fuera del equilibrio, la dinámica de redes complejas.

Requisitos

Año académico 2012-13

Asignatura 10104 - Fenómenos cooperativos y

fenómenos críticos: aplicaciones

Grupo 1, 1S

Guía docente A
Idioma Castellano

Recomendables

Es recomendable que el estudiante haya cursado las asignaturas de física estadística propias de la titulación de Grado en Física

Competencias

Específicas

- 1. Comprender los fenómenos críticos y cooperativos desde la perspectiva de la física interdisciplinar y los sistemas complejos (E4).
- 2. Conocer el significado de las leyes de escala y las técnicas del grupo de renormalización (E5).
- 3. Conocer los conceptos propios de la física estadística y de no equilibrio: modelos reticulares y de crecimiento (E7).
- 4. Comprender las técnicas y conceptos propios de las redes complejas (E15).
- 5. Comprensión de los conceptos básicos de la teoría de la información clásica y cuántica: entropía de Shanon, complejidad, colectividades, superposición cuántica, entrelazamiento, algoritmos (E18).

Genéricas

- 1. Adquirir la capacidad de desarrollar un trabajo de investigación en toda su extensión: asimilación de bibliografía, desarrollo del tema y elaboración de conclusiones (TG2).
- 2. Saber redactar de manera rigurosa los distintos pasos del trabajo de investigación y presentar los resultados para un público experto (TG3).
- 3. Desarrollar la capacidad de comprender y aplicar conocimientos de computación de altas prestaciones y métodos numéricos avanzados a problemas en el campo de los sistemas complejos (TG6).

Contenidos

Contenidos temáticos

- Tema 1. Fenómenos críticos y grupo de renormalización.
- Tema 2. Modelos reticulares de dinámica fuera del equilibrio.
- Tema 3. Fenómenos de crecimiento y agregación.
- Tema 4. Dinámica de transiciones de fase. Nucleación y escala dinámica.
- Tema 5. Dinámica de redes complejas.

Metodología docente

Actividades de trabajo presencial

Año académico	2012-13
Asignatura	10104 - Fenómenos cooperativos y
	fenómenos críticos: aplicaciones
Grupo	Grupo 1, 1S
Guía docente	A
Idioma	Castellano

Modalidad	Nombre	Tip. agr.	Descripción
Clases teóricas	Clases teóricas	Grupo grande (G)	Finalidad: adquirir las competencias genéricas y específicas a través de la exposición de los contenidos temáticos que habrán de permitir al alumno la asimilación de conceptos y metodologías básicas en el estudio de fenómenos cooperativos y críticos. Metodología: clase magistral

Actividades de trabajo no presencial

Modalidad	Nombre	Descripción
Estudio y trabajo autónomo individual o en grupo	Trabajo autónomo	Aplicación de los conceptos y técnicas expuestas en clase a la resolución de ejercicios propuestos. Se facilitará a los alumnos bibliografía complementaria, esencialmente artículos de revistas científicas, que les acerquen al lenguaje científico y trabajen las competencias de comprensión y exposición de los resultados científicos. Así mismo, se propondrá a los alumnos la realización de trabajos selecionados.

Riesgos específicos y medidas de protección

Las actividades de aprendizaje de esta asignatura no conllevan riesgos específicos para la seguridad y salud del alumnado y, por tanto, no es necesario adoptar medidas de protección especiales.

Estimación del volumen de trabajo

Modalidad	Nombre		Horas	ECTS	%
Actividades de trabajo presencial		•	30	1.2	24
Clases teóricas	Clases teóricas	,	30	1.2	24
Actividades de trabajo no presencial			95	3.8	76
Estudio y trabajo autónomo individual o en grupo	Trabajo autónomo		95	3.8	76
		Total	125	5	100

Al inicio del semestre estará a disposición de los estudiantes el cronograma de la asignatura a través de la plataforma UIBdigital. Este cronograma incluirá al menos las fechas en las que se realizarán las pruebas de evaluación continua y las fechas de entrega de los trabajos. Asimismo, el profesor o la profesora informará a los estudiantes si el plan de trabajo de la asignatura se realizará a través del cronograma o mediante otra vía, incluida la plataforma Campus Extens.

Evaluación del aprendizaje del estudiante

Año académico 2012-13

Asignatura 10104 - Fenómenos cooperativos y

fenómenos críticos: aplicaciones

Grupo Grupo 1, 1S

Guía docente A Idioma Castellano

Clases teóricas

Modalidad Clases teóricas

Técnica Trabajos y proyectos (No recuperable)

Descripción Finalidad: adquirir las competencias genéricas y específicas a través de la exposición de los contenidos

temáticos que habrán de permitir al alumno la asimilación de conceptos y metodologías básicas en el

estudio de fenómenos cooperativos y críticos. Metodología: clase magistral

Criterios de evaluación Evaluación continuada de la participación y aportación de los alumnos en clase. Presentación de pequeños

ejercicios propuestos por el profesor y discusión de sus resultados.

Porcentaje de la calificación final: 50% para el itinerario A

Trabajo autónomo

Modalidad Estudio y trabajo autónomo individual o en grupo

Técnica Trabajos y proyectos (Recuperable)

Descripción Aplicación de los conceptos y técnicas expuestas en clase a la resolución de ejercicios propuestos. Se

facilitará a los alumnos bibliografía complementaria, esencialmente artículos de revistas científicas, que les acerquen al lenguaje científico y trabajen las competencias de comprensión y exposición de los resultados

científicos. Así mismo, se propondrá a los alumnos la realización de trabajos selecionados.

Criterios de evaluación Presentación y exposición pública de un trabajo seleccionado propuesto por el profesor.

Porcentaje de la calificación final: 50% para el itinerario A

Recursos, bibliografía y documentación complementaria

Bibliografía básica

- 1. J. M. Yeomans, "Statistical Mechanics of Phase Transitions". Oxford Sci. Pub (2002).
- 2. P. M. Chaikin and T. C. Lubensky, "Principles of Condensed Matter Physics". Cambridge Univ. Press (2000)
- 3. E. Stanley, "Introduction to Phase Transitions and Critical Phenomena". Oxford Sci. Pub (1987)
- 4. P. Meakin, "Fractals, scaling and growth far from equilibrium". Cambridge University Press, (1998).
- 5. R. Albert, A.-L. Barabási, "Statistical mechanics of complex networks", Rev. Mod. Phys. 74, 47 (2002);
- S.N. Dorogovtsev, J.F.F. Mendes, "Evolution of networks", Adv. Phys. 51, 1079 (2002).

Bibliografía complementaria

Otros recursos

Artículos de publicaciones científicas aportados por el profesor.