

Subject 11001 - Dinamical Systems and

Chaos

Group Group 1, 1S

Teaching guide A Language English

# Subject identification

**Subject** 11001 - Dinamical Systems and Chaos

Credits 1.5 in-class (37.5 hours) 4.5 distance (112.5 hours) 6 totals (150 hours).

GroupGroup 1, 1STeaching period1st semesterTeaching languageEnglish

#### Lecturers

| Lecturers                    | Timetable for student attention |              |                    |             |        |  |  |
|------------------------------|---------------------------------|--------------|--------------------|-------------|--------|--|--|
| Lecturers                    | Starting time Finishing time    | Day          | Start date         | Finish date | Office |  |  |
| Pere Colet Rafecas           |                                 | There are no | o defined sessions |             |        |  |  |
| Manuel Alberto Matias Muriel |                                 | There are no | o defined sessions |             |        |  |  |

# Degrees where the subject is taught

| Degree                                        | Character | Academic | Studies             |
|-----------------------------------------------|-----------|----------|---------------------|
|                                               |           | year     |                     |
| Master's Degree in Physics of Complex Systems | Optional  |          | Postgraduate degree |

### Contextualisation

This is one of the compulsory courses of the Structural Module of the master of Physics of Complex Systems. It is intended to provide a solid background on dynamical systems which will be needed for the other courses of the master.

# Requirements

### Recommendable

It is recommended that the student has a basic knowledge on differential equations and numerical integration of differential equations (Euler and Runge-Kutta methods).

### **Skills**

This course develops both specific and generic competences.



Subject 11001 - Dinamical Systems and

Chaos

Group Group 1, 1S

Teaching guide A
Language English

# Specific

- 1. E8: To know to characterize generic behavior of dynamical systems and their instabilities...
- 2. E9: To know stability analysis techniques and know how to build bifurcation diagrams..
- 3. E10: To know to characterize chaos and know how to calculate Lyapunov exponents.
- 4. E11: To know how to apply dynamical systems techniques to physical, chemical, biological and social systems..

#### Generic

- 1. TG1: To be able to describe, both mathematically and physically, complex systems in different situations.
- 2. TG2: To acquire the capacity to develop a complete research plan covering from the bibliographic research and strategy to the conclusions..
- 3. TG6: To acquire high power computation skills and advanced numerical methods capabilities in applications to problems in the context of complex systems.

### Content

#### Theme content

#### 1. Introduction

Phase Space, Existence and unicity of trajectories, Liouville theorem, Hamiltonian vs dissipative systems.

### 2. One dimensional flows

Geometric representation. Fixed points. Potential representation. Stability analysis. Saddle-node bifurcation. Transcritical bifurcation. Pitchfork bifurcation. Normal forms. Bifurcation diagrams. Structural stability. Imperfect bifurcations and catastrophes.

#### 3. Two dimensional flows

Phase portraits. Fixed points. Stability. Forced damped oscillators. Limit Cycles. Index theory. Hopf bifurcation. Gradient systems. Lyapunov functions. Poincaré Bendixson theorem. Liénard Systems. Van Der Pol oscillator. Relaxation oscillations. Weakly nonlinear oscillators. Multiple time scale analysis.

#### 4. One dimensional maps. Chaos

Logistic map. Fixed points. Periodic solutions. Chaos. Lyapunov exponents. Routes to chaos. Universality. Feigenbaum's renormalization theory.

### 5. Three dimensional flows

Lorenz model. Chaos. Strange attractors. Poincare map. Lorenz map. Calculation of Lyapunov exponents.

# Fractals

Cantor set. Self-similarity. Dimension of self-similar fractals. Box counting dimension. Correlation dimension. Generalized dimensions D q.

### 7. Non-linear time series analysis

Poincaré section. Fourier characterization. Embedding methods.

#### 8. Excitability

Biological motivation. Active rotator. Fizhugh-Nagumo.



Academic year

Subject

11001 - Dinamical Systems and Chaos

Group

Group 1, 1S

Teaching guide

Language

A

English

### 9. Entrainment

Circle map. 1:1 frequency locking. Rational lockings. Arnold tongues. Devil's staircase.

# 10. Syncronization of oscillators

Weakly coupled oscillators. Reduction to phase dynamics. Synchronization. Landau-Stuart oscillators. Oscillator death. Kuramoto model. Diversity. Order Parameter. Self-consistent solution.

# 11. Delayed systems

Mackey-Glass model. Fixed points. Stability analysis and its numerical evaluation.

# Teaching methodology

# In-class work activities

| Modality           | Name               | Typ.Gr.         | Description                                                                                                                                                                                         |
|--------------------|--------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Theory classes     | Theory classes     | Large group (G) | Lectures explaining the theoretical concepts given by the professor.                                                                                                                                |
| Practical classes  | Practical sessions | Large group (G) | Resolution of practical examples and questions.                                                                                                                                                     |
| Laboratory classes | Lab sessions       | Medium group (M | ) This activity aims at the visualization of the nonlinear phenomena in real experimental systems. Experiments will be performed in mechanical, electronic or chemical systems.                     |
| Assessment         | Oral presentation  | Large group (G) | Each student will be given an individualized assignment that covers several of the topics of the course. Besides a written report, the student has to give an oral presentation to the whole class. |

# Distance education work activities

| Modality                  | Name                                         | Description                                                                                                  |
|---------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Individual self-<br>study | Exercises                                    | The student has to solve exercises assigned and present the solutions in written form.                       |
| Individual self-<br>study | Realization of the assignment                | The student must solve the individual assignment, prepare a report and organize an oral presentation.        |
| Individual self-<br>study | Study and understanding theoretical concepts | This activity aims at the understanding of the theoretical concepts and techniques explained in the lectures |



Subject 11001 - Dinamical Systems and

Chaos

Group 1, 1S

Teaching guide A
Language English

# Riscs especifics i mesures de protecció

Les activitats d'aprenentatge d'aquesta assignatura no comporten riscs específics per a la seguretat i salut de l'alumnat i, per tant, no cal adoptar mesures de protecció especials.

### Workload estimate

| Modality                           | Name                                | Hours | ECTS | %     |
|------------------------------------|-------------------------------------|-------|------|-------|
| In-class work activities           |                                     | 37.5  | 1.5  | 25    |
| Theory classes                     | Theory classes                      | 26    | 1.04 | 17.33 |
| Practical classes                  | Practical sessions                  | 6     | 0.24 | 4     |
| Laboratory classes                 | Lab sessions                        | 5     | 0.2  | 3.33  |
| Assessment                         | Oral presentation                   | 0.5   | 0.02 | 0.33  |
| Distance education work activities |                                     | 112.5 | 4.5  | 75    |
| Individual self-study              | Exercises                           | 40    | 1.6  | 26.67 |
| Individual self-study              | Realization of the assignment       | 40    | 1.6  | 26.67 |
| Individual self-study              | Study and understanding theoretical | 32.5  | 1.3  | 21.67 |
|                                    | concepts                            |       |      |       |
|                                    | Total                               | 150   | 6    | 100   |

At the beginning of the semester a schedule of the subject will be made available to students through the UIBdigital platform. The schedule shall at least include the dates when the continuing assessment tests will be conducted and the hand-in dates for the assignments. In addition, the lecturer shall inform students as to whether the subject work plan will be carried out through the schedule or through another way included in the Campus Extens platform.

# Student learning assessment

### Oral presentation

Modality Assessment

Technique Papers and projects (Non-recoverable)

Description Each student will be given an individualized assignment that covers several of the topics of the course.

Besides a written report, the student has to give an oral presentation to the whole class.

Assessment criteria Accuracy and quality of the work as well as the clarity in the oral exposition.

Percentage of final qualification: 20% following path A



Subject 11001 - Dinamical Systems and

Chaos

Group Group 1, 1S

Teaching guide A
Language English

#### Exercises

Modality Individual self-study

Technique Papers and projects (Non-recoverable)

Description The student has to solve exercises assigned and present the solutions in written form.

Assessment criteria Accuracy of the answers. Clarity and quality of the explanations.

Percentage of final qualification: 50% following path A

### Realization of the assignment

Modality Individual self-study

Technique Papers and projects (Non-recoverable)

Description The student must solve the individual assignment, prepare a report and organize an oral presentation.

Assessment criteria Suitability of the introduction and motivation. Accuracy of the work. Clarity of the ideas and explanations.

Relevance of the conclusions. Quality of the written report.

Percentage of final qualification: 30% following path A

# Resources, bibliography and additional documentation

### **Basic bibliography**

S.H. Strogatz, "Nonlinear Dynamics and chaos", Addison Wesley 1994 / Westview Press 2000.

E. Ott, "Chaos in Dynamical Systems", Cambridge University Press, 2nd edition, 2002.

### Complementary bibliography

- T. Schreiber, "Interdisciplinary application of nonlinear time series methods", Physics Reports vol. 308, p. 1-64 (1999) [mainly for topic 7].
- J.D. Murray, "Mathematical biology", 3rd edition, Springer, 2003 [mainly for topic 8].
- A. Pikovsky, M. Rosenblum, J. Kurths, "Synchronization: A universal concept in nonlinear sciences", Cambridge University Press, 2001 [mainly for topics 9-10].
- S.H. Strogatz, "From Kuramoto to Crawford", Physica D vol. 143, p. 1 (2000) [mainly for topic 10].
- T. Erneux, "Applied Delay Differential Equations", Springer, 2009. [mainly for topic 11].

### Other resources